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Executive summary 

The present document represents the second part of Deliverable A2.2 already delivered on June 

30th, 2022 and contains results related to the extraction from remote sensing data of further 

indices and sub-indicators at local scale useful to characterize and monitor the land 

degradation status of each study site according to the local pressures and threats affecting each 

site. Furthermore, those indices and sub-indicators already described in the previous release 

are summarised. 

Lastly, the document reports SDG 15.3.1 indicator computation with resulting land degradation 

mapping, as recommended by United Nations Convention to Combat Desertification to 

characterize the LD status, for each site. 

All the indicators were adopted not only for assessing the LD status but also for NBS restoration 

techniques effectiveness evaluation in those sites with restoration activities on-going or started 

during the project. 
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Acronyms and Abbreviations 

Acronym Description 

1OAO One Out, All Out 

BNR Blue/NIR Ratio 

BS Burn Severity 

CERTH-ITI CEntre for Research & Technology Hellas-Information Technology Institute   

CLC Corine Land Cover 

DEM Digital Elevation Model 

dNBR difference Normalized Burn Ratio 

EO Earth Observation 

EOSD Day of the end of the season 

EOSV Value of the end of the season 

ESA European Space Agency 

ETM+ Enhanced Thematic Mapper Plus 

EV Essential Variable 

FAO-LCCS Food and Agriculture Organisation - Land Cover Classification System 

GIS Geographic Information System 

HP Hydro-Period 

HR High Resolution 

HR-VPP High-Resolution Vegetation Phenology and Productivity 

kNN k-Nearest Neighbour 

LC Land Cover 

LD Land Degradation 

LIDAR LIght Detection And Ranging 

MAXD Day of the maximum of the season 

MAXV Value of the maximum of the season 

MINV Value of the minimum of the season 

MNDVI Modified-Normalized Difference Vegetation Index  

MSI MultiSpectral Imager  

MODIS Moderate Resolution Imaging Spectroradiometer 
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MSAVI Modified Soil Adjusted Vegetation Index 

MW Micro-Wave 

N2K Natura 2000 

NBR Normalized Burn Ratio 

NBS Nature-Based Solutions 

NDVI Normalized Difference Vegetation Index 

NDWI Normalized Difference Water Index 

NIR Near Infra-Red 

OLI Operational Land Imager  

PA Protected Area 

PoB Peak of Biomass  

PostPoB Post-Peak of Biomass 

PP Primary Productivity 

PPI Plant Phenology Index 

PrePoB Pre-Peak of Biomass 

RGB Red-Green-Blue 

RMSE Root Mean Square Error 

RS Remote Sensing 

SDG Sustainable Development Goal 

SOC Soil Organic Carbon 

SOSD Day of the start of the season 

SOSV Value of the start of the season 

SPEI Standardized Precipitation Evapotranspiration Index 

SRTM Shuttle Radar Topography Mission 

SS Soil Salinity 

SVM Support Vector Machine 

SWIR Short Wave Infra-Red 

TM Thematic Mapper 

TPROD Total productivity 

UNCCD United Nations Convention to Combat Desertification 

USGS United States Geological Survey 
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UTM Universal Transverse Mercator 

VHR  Very High Resolution 

Vis Visible 
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1. Introduction 

Action A2 has as major outcomes the extraction of information useful to characterize and 

monitor the LD status of the six study sites from RS data. The activities started from the first 

month of the project has been arrived at the first release of the present Deliverable A2.2 on 

June, 30th 2022 containing information about the initial release of indices and sub-indicators at 

local scale to be integrated into the SDG 15.3.1 indicator computation. Due to the need for more 

effort to cover all the project’s sites, the end of the activities has been extended for a further 

year. Therefore, this document represents the second part of Deliverable A2.2 and presents the 

results related to the extraction of the remaining indices and sub-indicators and summarises 

the results already discussed in the previous version to provide a comprehensive overview of 

the studies carried out for each site.  

Lastly, the document reports SDG 15.3.1 indicator computation with resulting land degradation 

mapping, according to the United Nations Convention to Combat Desertification 

recommendation to characterize the LD status, for each site. 

All the indicators were adopted not only for assessing the LD status but also for NBS restoration 

techniques effectiveness evaluation in those sites with restoration activities already on-going 

or started during the project. 
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2. Updates in the analysis of the study sites with remote sensing 

indicators extraction: methodologies and results 

The following is a comprehensive overview of the indices and sub-indicators extracted at local 

scale from remote sensing data for the study sites, according to the related pressures and 

threats affecting each of them, in order to provide a complete overview for the analysis of the 

LD status arriving at the SDG 15.3.1 indicator computation and the extraction of LD maps. 

2.1 Alta Murgia (Italy)  

Alta Murgia study site (SCI IT9120007) is characterized by a dryland ecosystem where natural 

and semi-natural grassland, hereafter collectively called grasslands, (with 62A0, 6210(*) and 

6220* habitat), is dominant hosting numerous endemic and generally rare species (Forte et al., 

2005; Tarantino et al., 2021). During last 30-40 years grasslands ecosystem has been exposed 

to tremendous impacts and accelerated processes of habitat degradation, fragmentation, and 

biotic contamination (i.e., woody encroachment), both within and next to its borders (Mairota 

et al., 2015). The practice of stone (rock) graining aimed to drive land use change from pasture 

to agricultural activities along with fire events, climate change and global warming, increasing 

of illegal waste and toxic mud dumping and traditional legal/illegal mining activities and the 

spreading of invasive plant species (Tarantino et al., 2019) have threatened severely the site.  

In 2004 the National Park was instituted so a series of protection and safeguard actions started. 

Hence, a long-term monitoring by RS was considered focusing about how useful was the 

establishing of National Park authority and what the consequential effects in the LD process of 

the site have been. The findings, reported in Tarantino et al. (2023), have assessed the key-role 

of National Park authority whose actions on the territory have resulted effective to preserve 

grasslands ecosystem conservation. During NL4DL project NBS activities for grasslands 

restoration are being testing in Alta Murgia site and their effectiveness will be analyzed by the 

end of the project with same indices/sub-indicators identified for LD monitoring. Figure 1 shows 

the Alta Murgia study site.  
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Figure 1. Alta Murgia study site, southern Italy.  

 

For monitoring purpose of the pressures referred to above, according to Deliverable A2.1, the 

following RS indices and sub-indicators were extracted as reported in Table 1.  

 

Table 1. Indices and sub-indicators selected for Alta Murgia study site. 

Sub-indicators Sensor Spatial 
resolution (m) 

Spatial 
frame 

Temporal 

frame 

GRASSLANDS COVER MAP; 
BURN SEVERITY MAP 

Landsat 30 

N2K 
+5 km 
buffer 

1990; 2001; 
2004; 2011 

Sentinel-2 10 2018; 2021 

PRIMARY 
PRODUCTIVITY 

VEGETATION 
PHENOLOGY 

INDEX (MSAVI2) 
Landsat 30 2000-2018  

PLANT 
PHENOLOGY 
INDEX (PPI) 

Sentinel-2 10 2017-2020  

STANDARDIZED PRECIPITATION 
EVAPOTRANSPIRATION INDEX (SPEI)  

3 meteo 
stations  

----------- 
2002-2020 

SOC 
Soilgrids+ 
LC maps 

30/10 
1990; 2004; 
2018; 2021 

 

  

5 km buffer area boundary 

1: 1500000 
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2.1.1 Grasslands Cover temporal trend 

Methodology 

To obtain LC mappings a multi-temporal dataset composed of four multi-season satellite 

images was evaluated for each year considered, namely 1990, 2001, 2004, 2011, 2018, 2021. 

The choice of these years was based on the need for a long-term investigation and the absence 

of cloud cover along with the open satellite archive of ready-for-processing satellite imagery 

availability. Indeed, time-series imagery from Landsat satellite collection results from 1990 with 

well-assessed radiometric and geometric corrections. In addition, for comparison purposes, the 

selected years result close to (differing no more than ±2 years) the years of the two available 

products of CLC (https://land.copernicus.eu/pan-european/corine-land-cover) (1990, 2000, 

2006, 2012, 2018), at 100 meters spatial resolution, and Copernicus Pan-European HR 

grasslands layer (https://land.copernicus.eu/pan-european/high-resolution-layers/grassland) 

(2015 and 2018) at 20 meters and 10 meters spatial resolution, respectively.  

From 1990 to 2011, Landsat satellite imagery, at 30-m spatial resolution, was considered, 

whereas for 2018 and 2021 Sentinel-2 satellite data, 10-m spatial resolution was used. We chose 

to produce mappings with higher spatial details (10 m) for recent years in order to provide local 

management authorities to be able to rely on a useful and effective tool. (Tarantino et al; 2023).  

For each satellite image the spectral bands in the Vis–NIR–SWIR were considered so resulting in 

6 bands for Landsat 5 TM and 10 bands for Sentinel-2 A/B data.  

Landsat data were freely downloaded from the USGS EarthExplorer portal 

(https://earthexplorer.usgs.gov/), Collection 2, Level 2, surface reflectance products, thus, 

atmospherically correct, and orthorectified using ground data by USGS. The whole N2K PA, plus 

a 5-km buffer area surrounding its boundary, result covered by the track 188, frame 31 and 32 

floating, so a mosaicking step was realized after cropping the boundary of interest. Sentinel-2 

data were freely downloaded from the ESA Copernicus Open Access Hub 

(https://scihub.copernicus.eu/dhus/#/home) as L2A products which are surface reflectance and 

orthorectified products. Even in this case, the entire study area results covered by the two tiles 

33TXF and 33TWF, thus, their mosaicking was needed. The bands with native spatial resolution 

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/high-resolution-layers/grassland
https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/%23/home
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of 20 meters (i.e., B5, B5, B7, B8A, B11, B12) were resampled, by a Nearest Neighbour algorithm, 

at 10 meters as those natives (B2, B3, B4, B8).  

Table 2 shows the whole set of satellite imagery considered jointly with their acquisition dates. 

Table 2. List of satellite imagery considered for the LC mappings. 

Year Acquisition date Sensor Spatial resolution (m) Bands 

1990 

March, 1st; 
May, 4th; 
July, 23rd; 
September, 25th 

Landsat 5 
TM 

30 

B1, B2, B3 (Vis) 
B4 (NIR) 

B5, B7 (SWIR) 
(6 bands) 

2001 

March, 15th; 
June, 3rd; 
August, 6th; 
November, 26th 

2004 

February, 4th; 
May, 26th; 
August, 30th; 
September, 15th 

2011 

February, 7th; 
May, 14th; 
August, 18th; 
October, 5th 

2018 

January, 30th; 
April, 20th; 
July, 19th; 
October, 27th Sentinel-2 

A/B 
10 

B2, B3, B4 (Vis) 
B5, B6, B7 (Red Edge) 

B8, B8A (NIR) 
B11, B12 (SWIR) 

(10 bands) 2021 

February, 3rd; 
May, 24th; 
July, 23rd; 
September, 26th 

 

The four images of each year, with its own bands each one, were stacked obtaining a multi-

season raster dataset composed by 24 layers, in the case of Landsat data, or by 40 layers for 

Sentinel-2 data. Each resulting multi-season dataset, for each year, was the input to a 

supervised, data-driven, pixel-based classification machine learning algorithm to obtain LC 

classified maps as output. A set of reference polygons collected through, both, in-field 

campaigns and visual interpretation of available orthophotos and distributed with a “stratified” 

sampling to ensure a minimum number of polygons–samples for each class (i.e., stratum) 

(Congalton et al., 2014) were considered for training the classifier and subsequent validation of 

the output map. As a result, 70% of each LC class sample was used for training and 30% for the 

validation, respectively. Ground truth data was related to 12 LC classes, including grasslands, 
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labelled according to FAO-LCCS2 (Di Gregorio & Jansen, 2005) class taxonomy. Nearly 50% of 

the training and validation pixels were represented by grassland samples since this was the 

dominant LC in the scene and the class of greatest interest in this study, so high accuracy was 

required for this class. The list of LC classes mapped is reported in Table 3. 

 

Table 3. LC classes legend according to FAO-LCCS2 taxonomy 

 

 

A different SVM classifier (Huang et al., 2002; Mountrakis et al., 2011) was trained for multi-class 

problems, one for each year, due to its effectiveness in high dimensional spaces (Foody & 

Mathur, 2004) and well-suited when small training data sets are available. Following the 

recommendations reported by Othman & Gloaguen (2014), in our study a radial basis function 

was selected as kernel type while the penalty parameter chosen was taken as 100. The gamma 

in kernel function was chosen as the inverse of the band numbers used in the data input (Yang, 

2011).  

Then, from each LC mapping produced as output, the grasslands layer was extracted obtaining 

a time series of grasslands mappings. The whole workflow for obtaining the grasslands cover 

mapping, for each year considered, is shown in Figure 2. 

 

Val Description Code 

0  Unclassified  

1  Cultivated Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Evergreen A11/A7.A9 

2  Cultivated Terrestrial Vegetation/Trees.Broadleaved.Deciduous A11/A1.A7.A10 

3  Cultivated Terrestrial Vegetation/Shrubs.Broadleaved.Deciduous A11/A2.A7.A10 

4  Cultivated Terrestrial Vegetation/Herbaceous A11/A3 

5  Natural Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Evergreen A12/D1.E1 

6 C Natural Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Deciduous A12/ D1.E2 

7  Natural Terrestrial Vegetation/(Trees/Shrubs)Needleleaved.Evergreen A12/ D2.E1 

8  Natural Terrestrial Vegetation/Herbaceous.Graminoid (GRASSLANDS) A12/A2.A6 

9  Artificial Surfaces/BuiltUp B15/A1 

10  Artificial Surfaces/NonBuiltUp.ExtractionSites B15/A2.A6 

11  Artificial or Natural Waterbodies/Water B27-B28/A1 

12  Burn Area  
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Figure 2. Workflow for grasslands cover mapping. 

Results 

Figure 3 shows the LC mapping obtained for 2021. 

 

 

 

 

 

 

 

 

 

 

Figure 3. LC mapping for 2021. 

 

The resulting grasslands mappings for each year are shown in Figure 4 jointly with information 

about Overall Accuracy (OA) in the discrimination of grasslands cover vs. other (binary 

classification problem). OA is computing according to Congalton & Kass (2009).  

As expected, those mappings obtained from Sentinel-2 resulted more detailed (the mapped 

areas result less smoothed) not only for the higher spatial resolution but also more accurate 

for the use of more spectral bands (i.e., 10 bands vs. 6) with the addition of the contribution of 

more spectral ranges for grasslands discrimination.  

1: 1300000 

OA=90.73%±0.37% 
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Figure 4. Grasslands cover mapping for the years: 1990, 2001, 2004, 2011, 2018, 2021.

Grasslands cover 2018 Grasslands cover 2021 

Grasslands cover 2004 Grasslands cover 2011 

Grasslands cover 1990 

1: 1500000 

Grasslands cover 2001 

OA=97.00%±0.28% OA=98.04%±0.25% 

OA=97.45%±0.29% OA=96.24%±0.37% 

OA=99.25%±0.04% OA=98.43%±0.20% 
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Grasslands coverage, for each year, resulting from the mappings is reported in Table 4.  

Table 4. Grasslands cover (ha) for each year within N2K PA, National Park and buffer area 

only boundaries. The percentage cover over the whole area for each boundary is reported 

too. 

Year 
Spatial 

resolution (m) 
N2K PA boundary 

(126175 ha) 
National Park 

boundary (68192 ha) 
Buffer area only 

boundary (124110 ha) 

1990 

30 

49513 (39.24%) 33610 (49.28%) 899 (0.72%) 

2001 36921 (29.26%) 25689 (37.67%) 778 (0.62%) 

2004 35140 (27.85%) 24728 (36.26%) 678 (0.54%) 

2011 35748 (28.33%) 24673 (36.18%) 638 (0.51%) 

2018 
10 

40679 (32.24%) 27457 (40.26%) 520 (0.42%) 

2021 35139 (27.85%) 23427 (34.35%) 435 (0.35%) 

 

Figure 5 shows several plots of the presence of grasslands, within N2K PA and the National Park 

boundary (on the left) and in a 5-km buffer area surrounding (on the right), during the period 

1990-2021 to evaluate its temporal trend. 

 

 

 

 

 

 

 

Figure 5. Plots of trend for grasslands cover vs. time. 

From the analysis of the temporal trend for grasslands presence the following considerations 

can be evaluated: 

• From 1990 to 2004, year of establishment for the National Park authority, there was a 

high reduction of grasslands ecosystem more pronounced during the decade from 1990 

to 2001 (Figure 6); 
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Figure 6. Grasslands mappings comparison: 1990 vs. 2001.  

In the close-up natural grassland lost due to fire events can be appreciated. 

 

• From 2004 to the present grasslands presence has remained substantially the same 

except for a slight increase detected in the 2018 due to grasslands regrowth after fire 

events. Several of these latter areas interested by grasslands regrowth became 

occupied by woody encroachment, thus, with a new decrease in grasslands presence; 

• In the buffer area, surrounding the protected area boundary, the presence of 

grasslands, very poor all along, has suffered of a continuous declining temporal trend 

starting from 1990 to the present; 

• The presence of protection and safeguard actions as those carried out by the National 

Park authority or the establishment of a PA seem to have been essential to preserve 

grasslands ecosystem degradation. 

  

1: 1000000 
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2.1.2 Burn Severity (BS) temporal trend 

Methodology 

For the analysis of fire-affected areas, BS mappings through the computation of NBR spectral 

indices (Deliverable A2.1), according to Nasery & Kalkan (2020), were computed from May to 

September (summer season) considering acquisition date at the beginning and the end of each 

month, for the same years of LC mappings. Then, for each month, the difference between the 

former and the latter NBRs (dNBR), so considering them as pre-fires and post-fires images, 

respectively, was computed to estimate the BS. In case of availability of only one image per 

month the difference between two successive months was considered. Later the dNBR was 

masked extracting those pixels corresponding to LC layers with values equal to 5, 6, 7, 8, 12 

which represent grasslands, forest and burned areas excluding cultivated areas so to remove 

those burned areas due to agricultural practices. Finally, some thresholds were applied to 

identify different severity levels zones. Landsat and Sentinel-2 images (at 20 m) among those 

free of clouds were considered and pre-processed as described at previous subsection 2.1.1 

for radiometric and geometric calibration and mosaicking. The list of images considered is 

reported in Table 5. 

Table 5. List of satellite imagery considered for BS mappings. 

  

Year Acquisition date Sensor 
Spatial 

resolution (m) 
Bands 

1990 
May, 4th; 
June, 5th; 

July, 23rd; 
September, 25th 

Landsat 5 
TM 

30 
B4 (NIR) 

B7 (SWIR) 
2001 May, 2nd; August, 6th 

2004 May, 26th; August, 30th 

2011 May, 14th; August, 18th 

2018 

April, 30th; 
May, 25th; 
July, 2nd; 
July, 22nd; 

August, 1st; 
August, 31st; 
September, 7th; 
September, 22nd 

Sentinel-2 
A/B 

20 
B8A (NIR narrow) 

B12 (SWIR) 

2021 

May, 9th; 
May, 24th; 
June, 3rd; 
June, 28th; 
July, 8th; 

July, 28th; 
August, 7th; 
August, 22nd; 
September, 14th; 
September, 26th 
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Figure 7 shows the workflow for Burn Severity mapping.  

 

 

 

 

 

 

 

Figure 7. Workflow for BS mapping.  

 

Results 

An example of BS mapping with several close-ups compared with satellite Sentinel-2 images is 

shown in Figure 8. 

     

 

 

 

 

 

 

 

 

 

 

 

Figure 8. BS mapping for July 2021 with two close-ups in which mappings are compared to 

Sentinel-2 images for a qualitative validation.  

  

1:1000000 

July 2021 
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From the analysis of the temporal trend for BS mappings time-series emerges: 

• A high capacity of recovery by grasslands after fire events: already after several weeks 

burned areas cannot be detected from satellite imagery; 

• Grasslands is the initial vegetation in areas where forest was burned;  

• For those areas crossed by fires more times, probably more resilient not autochthone 

species appear (e.g., downy oak).  

• Mappings by RS data can offer more accurate boundaries of burned areas than fire 

registry detecting also those small, burned area often not officially reported. 

 

2.1.3 Primary Productivity (PP) temporal trend of grassland 

Methodology 

The analysis of PP was based on two different proxies as listed in Table 1: inter-annual time 

series of, both, MSAVI2 vegetation spectral index extracted from Landsat 5-7-8 and PPI based 

on Sentinel-2 for the period 2000-2018 and 2017-2020, respectively. The first data set was 

analysed with a Bayesian harmonic model, while the second one was analysed using TimeSat 

model based on a double exponent modelling approach (Vicario et al., 2020).  

For the 2000-2018 data set, 3 summary statistics are recorded: mean value, standard deviation 

of the year and day of maximum. Only the day of maximum is directly comparable between the 

two approaches since the first one is based on the astronomical year, whereas TimeSat on the 

identification of the vegetative season.  

For the first time series, due to the long time span, three different times were considered (2001, 

2004, 2018) to identify grasslands pixels that, then, were classified in 8 categories given the 23 

possible combinations.  

All data are relative to the grasslands coverage identified on 2018 Sentinel-2 image (see 

subsection 2.1.1) within a 5-km buffer around the Alta Murgia National Park.  
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Results 

Vegetation Phenology Index (MSAVI2)  

The long-term inter-annual MSAVI2 time-series, extracted from Landsat data at 30 m spatial 

resolution for the period 2000-2018, identifies a similar trend among the different 8 classes of 

grassland presence over time and among the 3 quartiles for which the distribution was 

explored. Figure 9 shows the trend of annual statistics over the period 2000-2018 investigated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Trend of annual summary statistics over 2000-2018 period. The code starting with 

H refers to pixels that are or not considered grasslands in the 3 available time of mapping. 

H000 and H111 identifies the pixels that were never and always grasslands, respectively. 

The following considerations can be inferred:  

• The annual mean is increasing; 

• The annual variation, expressed by the standard deviation, is more or less stable over 

time with some large single-year anomalies; 

• The day of the maximum from 2002 onward has a small anticipation whereas in 2000 

and 2001 very anomalous early date appear. 

  



 

 

 

 

Deliverable A2.2 “Analysis of the selected regions and pilot sites” 

 

22 

Plant Phenology Index (PPI)  

For the period 2017-2020, the inter-annual PPI time-series from Copernicus services was 

considered. Data were collected from WEKEO service (https://www.wekeo.eu/), Copernicus 

platform, and formatted as single NetCDF (Network Common Data Form) file. Only 16 statistics 

(8 per season, see Table 6) were collected from the original 26 statistics (13 for each of the two 

vegetative seasons taken in consideration within a year) because four of them were considered 

not relevant (i.e., the slope of the curve in green-up and green-down for each season) and the 

others could be already calculated from the 16 collected as shown in Table 7. 

Table 6. Name of the statistics downloaded. 

Acronym Meaning 

MAXV Value of the maximum of the season 

MAXD Day of the maximum of the season 

MINV Value of the minimum of the season 

SOSV Value of the start of the season 

SOSD Day of the start of the season 

EOSV Value of the end of the season 

EOSD Day of the end of the season 

TPROD 
Total productivity of the season 

(integral of the season using zero as base value) 

 

Table 7. Further statistics referred to those of Table 3.1. 

Statistics (acronym) Formula 

Length (LEN) EOSD-SOSD 

Amplitude (AMPL) MAXV-MINV 

Seasonal Productivity (SPROD) TPROD-MINV*Length 

The NetCDF file consists of 8 variables since the values of the first and second vegetative season 

were stored as dimension within the same variable. The dimension for each variable were: 

latitude and longitude (expressed in meter within a UTM projection), time (in years), and 

vegetative season (first and second).  

https://www.wekeo.eu/
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Figure 10. Number of pixels that have first and second season across 2017-2020.  

From Figure 10 is possible to notice that not all pixels have data for the second vegetative 

season given that within the HR-VPP algorithm the second season is optional. Depending to the 

year, pixel with a second seasonality, within the one selected as grasslands, are between 1
3⁄  

and 1
2⁄  of the total number of pixels. 

In Figure 11 the start and the end of the vegetative season, within the pixels evaluated as 

grasslands coverage in 2018, are shown using 5 quantiles (0.025, 0.25, 0.5, 0.75, 0.975) as 

measure of the spread of the measure in each time.  

 

 

 

 

 

 

 

 

 

Figure 11. Start and end of season for both yearly seasons over years. Notice that DOY is expressed as 

day since the start of the year in consideration, for this reason its values could be negative, if season 

started the year before, or bigger than the year length if season ended the year after. Season is attached 

to the year where the maximum lays. In background the astronomical season (fall, winter, spring, 

summer respectively in white, green, light brown and brown). 

 

The first season starts between the fall of the year before the start of spring, depending on the 

quantiles, and it ends within spring for the four first quantiles and at the end of summer for the 
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last quantile. The secondary season covers in general from the end of summer to the mid of 

the next winter, except for 2019. In this year some pixels (quantile 0.025) have a secondary 

growth starting from the begin of spring, probably due to winter vegetative season has the 

maximum value in winter and not in fall that cause the switch of name between first and 

secondary vegetative season.  

This is confirmed looking at Figure 12, where indeed the maximum value (MAXV) for the last 

quantile (0.975) of the secondary season is higher than primary season in 2019 only. In general 

(see Figure 11) the minimum value in the primary season is well detached from the maximum 

value while the two distributions do overlap for the secondary season.   

 

 

 

 

 

 

 

 

 

Figure 12. Value of the PPI across maximum and minimum (out of season). 

 

Remembering the time coverage of the two vegetative seasons it seems to indicate that the 

majority of grasslands has only a short break somewhere in summer and for the rest is quite 

active, although secondary season is not very different from background. This consideration 

can be confirmed looking at the amplitude (Figure 13 on the left) where the sum of the median 

length of first and second season is 220 days, while for quantile 0.75 the sum of the length is 

about 320 days. 
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Figure 13. Length and amplitude of season across year and seasons. 

 

Within the HR-VPP framework is always complex to define the best summary statistics to show 

space variability. Looking at productivity as a main ecosystem function, it becomes interesting 

to look at TPROD that is the integral of the value of the vegetation index PPI across a vegetative 

season. To get a more general overview, TPROD was summed in each pixel across season and 

then averaged across the 4 years of the HR-VPP data set. Limiting the observation to grasslands, 

the results in Figure 14 were obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Map of the integral of PPI across seasons averaged across time.  
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It is possible to notice that: 

• Grasslands has higher productivity on the side of the highlands that look towards 

Adriatic Sea; 

• The central plateau is less productive. 

 

2.1.4 Standardized Precipitation Evapotranspiration Index (SPEI) temporal trend 

Methodology 

The evaluation of SPEI for Alta Murgia National Park captures the main impact that the increase 

in temperature has on water availability for vegetation and it is used to identify and monitor 

the phenomena of dryness by evaluating two different time scales, monthly and quarterly. This 

index is based on the ratio between precipitation and potential evapotranspiration (Hargreaves 

& Zohrab, 1985; McMahon et al., 2013; Chad et al., 2019). The climate data used as input come 

from three weather stations within the park (Figure 15): data from stations of Minervino Murge 

and Mercadante, cover the time range between 2002 and 2020; data from the station of 

Masseria Modesti covers the time range between 2010 and 2020. The extracted data were 

average temperature, minimum temperature, maximum temperature, and precipitation. 

 

 

 

 

 

 

 

 

 

Figure 15. Location of the weather stations of the Alta Murgia National Park (marked by a point).  

In yellow the Park’s boundary and in red the N2K boundary. 
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Results 

The dryness trends are reported for the Mercadante and Minervino Murge weather stations 

with a monthly integration (Figure 16). Analyzing and comparing the two weather stations with 

the longest time series it is possible to observe that SPEI trend is associated with precipitation 

events. From the Mercadante control unit results that precipitation has decreased starting from 

the end of 2012 and aridity has increased, especially in the hottest months. For both control 

units, on average, 21.5% of the daily data show moderate aridity, of which 14% for Mercadante 

and 12.5% for Minervino Murge show phenomena of severe aridity. From the monthly 

integration, it appears that from June to August the area is affected by strong aridity; in the last 

10 years starting from the summer of 2011, it also touches average monthly values below -2 for 

the Mercadante station classifying as "extremely arid" area. In Minervino Murge weather 

station, the phenomena of extreme aridity seem to have been triggered already since 2007. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Daily and Monthly integration of SPEI for weather station of Mercadante and Minervino 

Murge compared with the respective rainfall distributions. 

 

MERCADANTE MINERVINO 
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The SPEI with quarterly integration (Figure 17) confirms that the two central quarters of the 

year, in conjunction with the vegetative period, result the driest, especially starting from 2015 

for Mercadante (Figure 17-left). It can be noted that they are not counterbalanced by 

exceedingly prolonged periods of absence of aridity; even where the SPEI does not reach 

negative values, it always stands at values below 1, therefore, classified as "near normal/mild 

drought" rarely higher than 1 and therefore never "moderately wet" suggesting that the 

availability of precipitation is never so high. Slightly different seems to be the situation of 

Minervino Murge (Figure 17-right) where, as already stated, the aridity is strong since 2007 but 

balanced by values of good water availability in the less arid months due to more frequent 

rainfall until 2015 (values above 1).  

 

 

 

 

 

 

 

Figure 17. SPEI trends with Quarterly integration calculated by Minervino Murge and  

Mercadante weather stations. 

 

Concerning Masseria Modesti control unit, the climatic series available is less extensive as it 

goes from 2010 to 2020, but the trend is remarkably similar to that of Mercadante and 

Minervino Murge and gives us a clear view of the aridity phenomena that affect this area. In 

fact, from the entire series, it emerges that 20.5% of the values show moderate aridity 11% of 

which show phenomena of severe aridity, both for the monthly and quarterly integration 

(Figure 18), confirming thus strong aridity, especially in the summer months that in 2012 and 

2015 and 2017 reach values between -2 and -3 (extreme aridity). Therefore, from the quarterly 

integration, it is possible to note that starting from 2015 there is no evidence that during the 

non-arid months they can balance the summer aridity defined by extremely high SPEI values. 

MINERVINO MERCADANTE 
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(a)                                                   (b) 

Figure 18. Daily, Monthly and Quarterly integration of SPEI for weather station of Masseria Modesti 

compared with the rainfall distribution. 

 

2.1.5 Soil Organic Carbon (SOC) temporal trend 

Methodology 

The extraction of SOC temporal trend was performed by using Trends.Earth plugin within the 

open- source QGIS tool according to Giuliani et al. (2020). As reference SOC map the most recent 

(update in June 2016) and improved version of SoilGrids (Hengl et al., 2017) product was 

considered. It was produced at 250 m spatial resolution and assessed for organic carbon and 

other soil properties available under the Open Data Base License. This product was primarily 

derived from MODIS satellite land products, SRTM DEM derivatives, climatic images and global 

landform and lithology maps by a machine learning supervised approach. Two different LC 

mappings were needed related each one to the years to be compared and, first, reclassified in 

MODESTI 
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7 main classes: cropland, tree-covered, grassland, artificial, water body, other land, no data. 

Then, according to specific coefficients related to the type of LC transition, a SOC map was 

produced for each LC map and, lastly, the SOC temporal trend mapping between the two years 

considered, for the whole PA, was computed.  

For SOC losses greater than 10% degradation was considered. 

 

Results 

Table 8 and Figure 19 shows the SOC temporal trend mappings produced for the period before 

and after 2004 when National Park was instituted.   

Table 8. List of periods considered for the SOC temporal trend mappings and results. The 

percentage is related to the whole N2K PA (126175 ha). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. SOC degradation mappings produced for Alta Murgia. 

  

Period 
Spatial 

resolution (m) 
Objectives Degradation Improvement 

1990-2004 

30 

Before National Park institution 
(2004) 

2348 ha 
(1.86%) 

5090 ha  
(4.00%) 

2004-2018 
After National Park institution 

(2004) 

1059 ha 
(0.84%) 

4515 ha  
(3.60%) 

2004-2018 

1: 1500000 

1990-2004 
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The following considerations can be derived: 

• In both period improvement can be appreciated mainly due to the grasslands regrowth 

on burned areas at time T1; 

• After the Alta Murgia National Park establishment SOC degradation was reduced; 

 

2.1.6 SDG 15.3.1 computation and land degradation mapping 

Methodology 

According to UNCCD guidelines (Sims et al., 2021), SDG 15.3.1 indicator is obtained by 

considering 3 sub-indicators: LC trend, PP trend, and SOC stocks trend. In this study additional 

sub-indicators related to the pressures and threats affecting each site was integrated. 

In the computation of SDG 15.3.1 indicator, according to UNCCD guidelines (Sims et al., 2021), 

the following steps were addressed: 

• for each sub-indicator the temporal trend was computed with a 3-values output such as 

Degradation, Improvement, Stable; 

• the final SDG 15.3.1 mapping was obtained combining all sub-indicators according to 

the principle “one out, all out” (1OAO) such as an OR combination where:  

✓ as long as one of sub-indicators has Degradation value, the result will be 

Degradation; 

✓ in case of sub-indicators have only Improvement or Stable values, the results will 

be Improvement, as reported in Figure 20; 
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Figure 20. Possible values of the 3 main sub-indicators to be aggregated for SDG 15.3.1 

indicator computation. 

• for SDG 15.3.1 percentage computation, the total proportion of grasslands that is 

degraded over total grasslands area was computed, according to (Sims et al., 2021, page 

9), as: 

 

 

where: 

Pn is the proportion of grasslands that is degraded at time tn since the baseline period t0=1990; 

A(Degraded)n is the total area degraded at tn computed as: 

A(Degraded)n= A(Recent Degraded)n + A(Persistent Degraded)n - A(Improvement)n  

In particular the term A(Persistent Degraded)n implies the analysis of a period prior to the one 

being analysed. 
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In details the specific choices for Alta Murgia site are the following: 

• different temporal ranges to be monitored, according to the main meaningful events in 

the site, were identified such as: 1990-2004 (this latter as year of National Park 

institution) and 2004-2018; 

• the spatial scale of 30-meters was chosen according to the need of local scale 

investigation and spatial resolution of Landsat images which represent the main satellite 

data analysed; 

• only the trend for Grasslands (the main threatened ecosystem) LC was considered; 

• for the additional sub-indicators, the following range values were considered: 

✓ BS mapping: all the pixel with values greater than 0.15 or 0.25 for the case of July 

or August as post-fire image, respectively, for each year, were considered 

degraded (burned areas). Respect to grasslands cover changes the use of BS can 

allow to take into account for those burn areas at time T1 which are not covered 

by grasslands regrowth at time T2 so representing “Persistent Degraded” as 

discussed above; 

• A(Total) is the total grasslands area at t0=1990. 

 

PP trend is itself split in other three sub-indicators called: Trajectory, Performance and State. 

To estimate PP in Alta Murgia site we used Landsat data, given that it has a large time extent 

and a better spatial resolution than MODIS proposed by UNCCD as source. We choose, as PP 

indicator, MSAVI2 that allows a good discrimination between bare soil and vegetation, which 

characterize the land pattern in the arid upland of Alta Murgia.  

Trajectory was evaluated with Mann-Kendal Trend test with critical value 0.05 and two tails, to 

obtain a tree valued image with zero for no significant change in trend, 1 for significant increase 

and –1 significant decrease. As reference time we took the period 2000 to 2004. This reference 

time was chosen because this period is the one with less change in LC per year than any other 

in Figure 4. As analysis we chose the 2004-2018 to see the effect of the onset of the National 

Park. 
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From figure 9 we expect that Trajectory index should include several pixels with an increasing 

trend but using the stringent critical value of 0.05 this is not true. Infact, only not giving 

assuming that the null hypothesis is no trend, using a critical value of 0.5, then, we find that 

most pixels have an increasing trend. In any case the number of pixels with decreasing trend 

stay low and constant (2.7% of the total grassland). 

 

 

 

 

 

 

Figure 21. The number of hectares that are flagged with increasing trend (1), no trend (0) or decreasing 

one (-1) using the two different critical values (0.5 and 0.05). 

 

The State sub-indicator is defined as the difference between the mean reference time value 

with the mean analysis period time. The discretize and make the indicator more robust, this 

difference is quantized identifying the 10 quantile that describes the full reference distribution 

and assigning the two mean values at each bins. More than two bins of difference are 

considered that the area is not stable. 

 

 

 

 

 

 

 

 

                            (a)                                            (b) 

Figure 22. (a) State sub-indicator over the period 2004-2018 using as reference 2000-2004. 

In yellow the state is increasing, green is stable, while blue is decreasing. (b) In the graph, 

the histogram shows the results in hectares.  
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The Performance sub-indicator looks at the ratio between mean observed value in a pixel and 

a high value (90 percentile) of the same kind of LC. We used grasslands cover of 2004 and 2018 

to produce 3 classes of grasslands that had the same history. For each such a class we applied 

the performance pipeline. The grasslands “10”, grasslands in 2004 but not in 2018, is the one 

with slightly larger PPI value of 90th% (0.34 versus 0.32 for the other two classes). As for the 

other sub-indicator, degraded land is very small.   

 

Table 9. Hectares that have stable (0) or degrading (-1) 

for each grassland habitat with different history 

 

 

 

 

 

Results 

The degradation mappings for the 2 periods considered are reported hereafter. 

1. For the period 1990-2004 the degradation mapping is shown in Figure 23:  

 

 

 

 

 

 

 

Figure 23. Land degradation mapping for Alta Murgia PA for the period 1990-2004. 

For this period the PP sub-indicator was considered only for 2000-2004 for computational 

complexity. 
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The resulting SDG 15.3.1 indicator percentage was equal to 34.78%. 

2. For the period 2004-2018 the degradation mapping is shown in Figure 24: 

 

 

 

 

 

 

 

 

 

(a)                                      (b)   

Figure 24. LD mapping for Alta Murgia PA for the period 2004-2018. (a) Mapping without 

“Persistent Degraded”; (b) Mapping with “Persistent Degraded”. 

 

The resulting SDG 15.3.1 indicator percentage was equal to: 15.63% for Figure 24.a and 

33.56% for Figure 24.b. 

SPEI sub-indicator should be integrated into the SDG 15.3.1 indicator computation to take 

into account the contribution of drought conditions (i.e., extreme drought conditions for 

SPEI < -1.5) in terms of, for example, number of monthly values with drought conditions for 

year. Due to the absence of a network of weather stations across the territory that would 

allow for any data spatialisation, (indeed the availability of only 3 weather stations results 

not enough), remains to be considered the presence of additional drought conditions, 

according to SPEI analysis at section 2.1.4, which could contribute to complete the 

degradation framework provided by the SDG 15.3.1 indicator. This considerations can be 

considered for all the study sites. 

1:500000 
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2.2 Palo Laziale (Italy)  

The study site "Bosco di Palo Laziale" (SAC IT6030022), shown in Figure 25, is characterized by 

a Mediterranean coastal forest ecosystem. During summer, high temperatures and low 

precipitations give rise to a dry period and negative soil water balance due to high 

evapotranspiration. 

 

 

 

 

 

 

 

 

Figure 25. Boundary of N2K site Bosco di Palo Laziale (Ladispoli), Rome, Italy. 

The area hosts one of the last remaining patches of an ancient Mediterranean floodplain forest 

of oaks and ash trees forming 91M0, 9340, 91B0 habitat types (Annex I, Habitats Directive 

92/43/EEC) that, from its pristine coverover the entire coastland of central Italy, was 

progressively reduced over the centuries by reclamation and deforestation activities.  

Over the last three decades, the area has been increasingly exposed to significant changes in 

the climate regimes that altered the balanced fluctuation of precipitation and drought. As a 

result, due to constantly increasing temperatures and extreme fluctuations of the rainfalls, the 

site has been affected by a tremendous case of aridity, especially at the soil level, which also 

turned into an increasing vulnerability of the forest stands to direct and indirect disturbances, 

including bush encroachment, over-competition for trophic resources, extreme weather 

events, fires and fungal diseases. This has generated a severe case of forest dieback in Palo 

Laziale causing widespread mortality in trees at the end of summer 2003, about 40% of the 

adult trees were found died – and high canopy loss (about 80%).  
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From 2018, a set of restoration interventions have been carried out on the site in the framework 

of the EU-funded project LIFE PRIMED (LIFE17 NAT/GR/000511). At that time, the forest looked 

more like a savanna than a floodplain oak woodland, with only few stands having the original 

canopy density and the survived trees showing high senescence and low seed production. Most 

of the topsoil freed by the dominant tree layer was occupied by thorny shrubs (e.g., Rubus spp.), 

with only limited accessible areas available for new saplings to grow. There was forest 

regeneration (plants at least three years old), but the shrubs were suffocated the growing 

seedlings. Such an encroachment strongly inhibited forest recovery and threatened the area 

occupied by other important habitat types such as the Mediterranean temporary ponds, 

(3170*). Such an invasion caused burial of the shallow ponds, decreasing photosynthesis 

sunlight and limiting gas exchange between the water surface and the atmosphere. Thus, 

selective trimming treatments were carried out annually on the site over three consecutive 

years to unleash oak and ash tree seedlings from the understory. The intervention also 

benefited fire prevention by recovering former fire-cutting strips and pathways for fire-fighting 

vehicles. 

 

 

 

 

 

 

 

 

 

Figure 26. Manual and machinery field operations to trim encroaching shrubs out from Palo 

Laziale’s topsoil. 

The following RS indices and sub-indicators, reported in Table 10, were extracted to investigate 

all the pressures described above. Due to the small size of the site (< 50 ha), archive VHR satellite 
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images were purchased, one image per year from 2002 to 2021: the only available imagery were 

nearly acquired mainly during summer season. 

Table 10. Indices and sub-indicators selected for Palo Laziale study site. 

Sub-indicators Sensor Spatial 
resolution (m) 

Spatial 
frame 

Temporal 
frame 

LAND COVER MAP Pleiades 2 

N2K 
+1 km buffer 

2021 

VEGETATION 
STATUS 

VEGETATION 
INDEX 

(NDVI/MSAVI2) 

Quickbird 2.4 
2002;2003;2005;

2008;2009 

Pleiades 2 
2014;2015;2016;
2018;2020;2021 

PRIMARY 
PRODUCTIVITY 

PLANT 
PHENOLOGY 
INDEX (PPI) 

Sentinel-2 10 2017-2020  

STANDARDIZED PRECIPITATION 
EVAPOTRANSPIRATION INDEX 

(SPEI)  

1 meteo 
station  

 1951-2020 

SOC 
Soilgrids+ 
LC maps 

2 
2002-2014;  
2014-2021 

 

2.2.1 LC temporal trend 

LC mapping for 2021 

Methodology 

Table 11 presents the data set of Pléiades images (RGB-NIR, 2 m spatial resolution) used to 

produce the LC map of Palo Laziale site for 2021. The input images were pre-processed for 

converting the Digital Number values in Top-of-Atmosphere reflectance and then geometrically 

co-registered. 

Table 11. List of VHR images considered for 2021 for Palo Laziale site.  

Information on the flush period is given. 

Sensor 
Date of Acquisition for 2021 

Flush Period 

Pleiades 

January, 11th  Pre-Peak of Biomass (PrePoB) 

April, 4th  Peak of Biomass (PoB) 

July, 9th Dry Season 

October, 9th Post-Peak of Biomass (PostPoB) 
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A Knowledge-driven object-based approach has been used to extract LC for the site in FAO-

LCCS2 taxonomy. This method includes two different steps: a preliminary segmentation and a 

successive classification (Adamo et al., 2020; 2016; 2014). The hierarchical scheme adopted by 

the FAO–LCCS2 taxonomy was implemented for class discrimination.   

The classification in LCCS has two main phases: (1) the Dichotomous phase and (2) the Modular-

Hierarchical phase. The Dichotomous phase includes three classification levels as shown in 

Figure 27 (Tomaselli et al., 2013). 

 

 

 

 

 

 

Figure 27. FAO-LCCS2 dichotomous phase. 

The Modular-Hierarchical phase combines of a predefined set of classifiers to provide more 

detailed land cover classes (Level 4). 

The eCognition tool (Trimble, 2019) spectral differences algorithm was applied for the 

segmentation step. This algorithm merges neighbour pixels that fall within a user-defined 

maximum spectral difference. The spectral difference between adjacent pixels is calculated by 

considering their spectral values in the RGB-NIR bands of both the PostPoB and PrePoB images. 

The maximum spectral difference was set to 0.019 by a trial-and-error procedure. The main 

criteria for such a trial-error process were to recognize some of the finest elements (e.g., tree 

crowns) of the landscape, without over-segmenting the scene. Thus, visual interpretation of the 

different output segmented scenes addressed the parameter selection.  

Then, LCCS2 classifiers were implemented in the classification algorithm developed for satellite 

image analysis along with expert knowledge rules from ecologists related to class description. 

First, Vegetated or Not-Vegetated objects (LCCS2 Level 1) and then, for each one, Terrestrial or 

Aquatic areas, were recognized (LCCS2 Level 2) (see Figure 27). 
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Then class descriptions provided by ecologists were used to go through the LCCS2 scheme 

including the Class phenology, Water Seasonality and Agricultural Practices. Vegetated class 

discrimination depends on different periods of biomass and plant development. Agricultural 

class discrimination is based on the periodicity of agricultural practices (i.e., ploughing, 

harvesting/mowing). Aquatic class discrimination requires water seasonality information.  

Expert knowledge exploitation was carried out by the implementation of if-then rules set based 

on selected spectral indices and context-sensitive features.  

The set of selected spectral indices includes: 1) NDVI, 2) Blue/NIR Ratio (BNR), which performs 

well in discriminating water covered pixels (Morris et al., 2010); 3) Brightness index, which was 

proven to be effective in identifying non-vegetated areas.  

Concerning context-sensitive features, the texture first order entropy (occurrence measure) 

(Anys et al., 1994), from the green band of the PostPoB image was used to discriminate 

herbaceous and woody vegetation.  The window size used to compute entropy was selected 

to match the scale of heterogeneity related to variations in vegetation height, distribution and 

structure.  

 

Results 

Figure 28 and Table 12 show the LC map and its related legend, respectively.  

 

Table 12. LC classes legend according to FAO-LCCS2 taxonomy 

 

Description Code 

 B_NotVegetated (road, bare soil, sand) B 

 Unclassified  

 Artificial or Natural Waterbodies B27 OR B28 

 Shadow  

C Natural or Artificial Aquatic Vegetation A24 OR A23 

 Natural Terrestrial Vegetation/Herbaceous.Graminoids or Cultivated Land/Herbaceous  A12/A2.A6 OR A11/A3 

 Natural Terrestrial Vegetation/Herbaceous.Forbs A12/A2.A5 

 Natural Terrestrial or Aquatic Vegetation/Trees.Broadleaved.Evergreen A12 OR A24/A3.D1.E1 

 Artificial Surfaces_Buildings B15/A13 

 Natural Terrestrial or Aquatic Vegetation/Trees.Broadleaved.Deciduous A12 OR A24/A3.D1.E2 

 Natural Aquatic Vegetation/Herbaceous.Graminoids A24/A2.A6 

 Road or Wet Sand B15/A7 OR B16 
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Figure 28. FAO-LCCS2 Modular-Hierarchical phase. 

 

 

Spectral categories mapping temporal trend 

Methodology 

Due to the availability of only one annual archive image at VHR per year from 2002, NDVI was 

extracted from Pleiades and Quickbird data to identify spectral categories of vegetation.  

The aim was to extract vegetation coverage from 2021 LC mapping and analyse degradation in 

vegetation going back in time using the summertime series. 

The VHR images were acquired in summer season as shown in Table 13. 

Table 13. List of VHR imagery considered for Palo Laziale site.  

 

Sensor 
Date of Acquisition  

Quickbird 
June 26th, 2002 

July 12th, 2003 

2021 

1: 35000 

1 km buffer area boundary 

OA=75.22%±0.84% 
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June 3rd, 2005 

July 9th, 2008 

July 30th, 2009 

Pleiades 

July 6th, 2014 

June 3rd, 2015 

August 7th, 2016 

July 7th, 2018 

June 26th, 2002 

January, 23rd; April, 4th  
July, 5th; October, 5th 2020 

January, 11th; April, 4th  
July, 9th; October, 9th 2021 

 

NDVI always ranges from -1 to +1: for negative values, it is likely water. On the other hand, NDVI 

values close to +1mainly stands for dense green leaves. In case of NDVI close to zero, there are 

likely no green leaves, and it could even be an urbanized area. NDVI is an index of vegetation 

"greenness," sensitive to the chlorophyll content of vegetation, therefore, indicative of 

vegetation health, which can be considered vigorous for NDVI values not less than 0.4. The 

legend associated with the different thresholding applied is reported in Table 14 

(https://www.agricolus.com/en/vegetation-indices-ndvi-ndmi/). 

Table 14. Thresholding applied to NDVI value 

Thresholds Description 

0,1≤x>0,2 Very Poor Vegetated 

0,2≤x>0,4 Poor Vegetated 

0,4≤x>0,6 Medium Vegetated 

0,6≤x>0,8 Strong Vegetated 

≥0,8 Very Strong Vegetated 

 

https://www.agricolus.com/en/vegetation-indices-ndvi-ndmi/
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In particular, 4 sub-areas were identified within the wood as reported in Figure 29. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. FAO-LCCS2 dichotomous phase. 

Since these areas have a dominant forest presence, thus, dense leaf cover, MSAVI, which applies 

a correction for the contribution of soil presence, was not found to be the most suitable spectral 

index (Borgogno-Mondino et al.; 2020). 

Results 

The following histograms, in Figure 30, report the percentage value obtained from the pixel 

count of NDVI, for each spectral category, in the specific sub-area, expressed in hectares and 

normalized with respect to the whole considered sub-area. Therefore, it represents a spatial 

distribution information of vegetation quality.  

 

 

 

 

 

N° Description Sub-Area (ha) 

1 Wood portion not degraded 1.27 

2 Wood portion interested by fire in 2017 2.68 

3 
Wood portion interested by ecological 

degradation 
18.51 

4 Wood portion not degraded 1.85 
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SUB-AREA 1 – Wood portion not degraded 

SUB-AREA 2 – Wood portion interested by fire in 2017 

SUB-AREA 3 – Wood portion interested by ecological degradation 
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Figure 30. Histograms reporting percentage value of pixel count of NDVI, for each spectral 

category, in the specific sub-area. 

The following considerations can be assessed: 

• Before 2014 vegetation does not appear to have been in optimal condition; 

• From 2014, vegetation health improved; 

• Particularly, the woodland portion affected by degradation due to heat waves and fungal 

infection by the forest dieback (sub-area 3) turned its canopy cover down for about a 

decade after the early signs of ecological degradation in 2002; 

• Particularly, the woodland portion affected by degradation due to heat waves and fungal 

infection (sub-area 3) turned its canopy cover down for about a decade after the early 

signs of forest dieback in 2002. In that period, vegetation appears mainly in a medium 

health status (medium vegetated) with a greater presence of poor vegetated status than 

in other sub-areas. Later on, the recovery of vegetation status remained lower than in 

other sub-areas; 

• In 2018 sub-area 2 vegetation status is lower than elsewhere, presumably due to the fire 

event in 2017; 

• Extremely low rainfall regimes of the annual and vegetation period (1st April-30th 

October of 2020), 540 mm and 277 mm, respectively, remarkably hindered the forest 

recovery process in 2021. 

 

SUB-AREA 4 – Wood portion not degraded 
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2.2.2 PP temporal trend  

Methodology 

The analysis of PP was based on the proxy PPI. As for Alta Murgia site, HR-VPP products from 

WEKEO were downloaded for Palo Laziale for the period 2017-2020 and a NetCDF file with 8 

variables (MAXV, MAXD, MINV, TPROD, SOSD, SOSV, EOSV, EOSD) and 4 dimensions (vegetative 

season, time, latitude and longitude) was built. The data were grouped by the available habitat 

map, produced by LIFE PRIMED in 2020 and converted to FAO-LCCS taxonomy. Within the 

protected area, 9 classes were identified. Due to the limited extension of the site compared 

with Alta Murgia where 5 quantiles over a single habitat class were reported, for Palo Laziale 

only the mean value for all the habitat classes was reported.  

 

Results 

Plant Phenology Index (PPI)  

Figure 31 shows the PP estimator (TPROD) for 2018 in the two different vegetation seasons in 

the same year. 

  

 

 

 

 

 

 

 

Figure 31. Overall view in Palo Laziale Tprod, integral of Seasons, for 2018. 

 

Looking at Figure 32 is possible to notice that the first season has clearly more productivity than 

the second, although there is a trend of increase in the second season in 2020 for as many 4 

classes over 8 for which the second season productivity closes the gap with the first season. 

This is untrue for herbaceous forbs in which productivity results relatively low in both seasons.  

First Season Second Season 
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Figure 32. Trend of productivity over years, season and habitat cover.  

Index is scaled as PPI multiplied for the day of the season. 

From Figure 33 it is easy to notice that the average value of the end of the first season overlaps 

with the start of the second season, so very few times is occupied by the inter-seasonal 

minimum. The same for the end of the second season which quite overlaps the onset of 

subsequent first season. 

 

 

 

 

 

Figure 33. Average trend of start and end of season date over years, season and habitat 

classes. 

Figures 34 and 35 show changes of PP in the period 2017-2020 for the two different 

vegetation seasons. 

 

 

 

 

 

 

Figure 34. Change Across 2017-2020 in integral under the curve of first Season.  
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Figure 35. Change Across 2017-2020 in integral under the curve of first Season. 

 

2.2.3 SPEI temporal trend 

Methodology 

The evaluation of SPEI on the “Bosco Palo Laziale” area outlines the main impacts that the 

increase in temperature has on water availability for vegetation and is used to identify and 

monitor the phenomena of dryness by evaluating two different time scales, monthly and 

quarterly. The choice of time integration is due to the large amount of data available for the site 

lasting from 1951 to 2020 for the following parameters: average temperature, minimum 

temperature, maximum temperature, and precipitation. The climatic data were recorded by a 

network of nearby weather stations, i.e., Maccarese (1951-2018), Cerveteri (1951-2018) and Palo 

Laziale (2019-2021) managed by the Regional Agency for Development and Innovation in 

Agriculture (ARSIAL). An alteration in the climate regime of the area embedding Palo Laziale 

wood emerges clearly from the series. Data shows annual warmer conditions of 0.6 C° from 

1994 to 2018 and extreme rainfall oscillation from year to year, although from 2018 to 2021 it 

has been registered a worrying decrease in annual precipitation from 1328 to 468 mm. 

 

Results 

Looking at Figure 36, it is possible to compare the monthly and quarterly SPEI trends, where 

31.5% of the monthly values show a tendency to aridity, having values below -0.5. The 
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abundance of precipitation shows an opposite trend in some parts of the time series; where 

rainfall is more or less abundant, it impacts differently the cumulative monthly and quarterly 

integrations of the SPEI. 

 

 

 

 

 

 

 

 

 

 

Figure 36. Monthly and quarterly integration of SPEI index for the reconstructed historical 

series of Palo Laziale wood. 

What is evident in Figure 37 is an increase in intensity and duration of seasonal drought period. 

The phenomena of extreme aridity are frequent not only in the summer but also in the autumn 

and winter quarterly; such phenomena increase its frequency over time starting from the end 

of the 90s.  

 

 

 

 

 

 

 

 

Figure 37. SPEI quarterly integration in the Palo Laziale wood since 1951. 
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This is confirmed by the decreasing trend of precipitation in the last 20 years (Figure 38), 

although extreme events counterbalance the SPEI values in the wettest months, these are 

insufficient to prevent aridity from becoming an increasingly frequent phenomenon 

throughout the year. 

 

 

 

 

 

 

 

(a)                                                         (b) 

Figure 38. SPEI in the Palo Laziale wood in the last 20 years: (a) monthly; (b) quarterly integration. 

2.2.4 SOC temporal trend 

Methodology 

The extraction of SOC temporal trend was performed by following the same procedure as for 

Alta Murgia site (section 2.1.5) applied to the only sub-area 3 subjected to ecological 

degradation. 

 

Results 

The periods reported in Table 15 were considered for SOC temporal trend mappings. 

Table 15. List of periods considered for the SOC temporal trend mappings. 

Period 
Spatial 

resolution (m) 
Objectives 

2002-2014 

2 

Period of ecological degradation 

2014-2021 Period of ecological recovery 

Figure 39 shows the SOC temporal trend mappings produced. 
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Figure 39. SOC degradation mappings produced for Palo Laziale. 

A stable result was obtained in the ecologically degraded sub-area 3. In any case the 

adopted Trends.Earth approach which search for a matching between the reference 

SoilGrids at 250 m with LC maps at 2 m can be considered not so accurate. 

 

2.2.5 SDG 15.3.1 computation and land degradation mapping 

Methodology 

In the computation of SDG 15.3.1 indicator for Palo Laziale only LC changes were considered 

due to the too coarse spatial resolution of the other sub-indicators compared with LC 

mappings. As LC trend the changes in the NDVI categorized values reported in Table 14 in the 

period 2002-2021 were considered for deciduous vegetation LC class (Table 12) mapped from 

VHR LC mappings for 2021. This LC class was the main affected by ecological degradation and 

the followed approach allowed to take into account of a sort of trend for vegetation status. 

Hence, SDG 15.3.1 indicator computation for Palo Laziale followed the same steps described in 

sub-section 2.1.6 with the following specific choices: 

• temporal ranges to be monitored: 2002-2003 (period of high degradation declared for 

the class of interest), 2003-2014 (period of ecological degradation) and 2014-2021 

(period of vegetation recovery); 

• a spatial scale of 2-meters; 

  

2002-2014 2014-2021 



 

 

 

 

 

 

53 

Deliverable A2.2 “Analysis of the selected regions and pilot sites” 

 

• only the trend for Natural Terrestrial or Aquatic 

Vegetation/Trees.Broadleaved.Deciduous (the class mainly affected by ecological 

degradation) mapped for 2021 was considered back in time; 

• Vegetation Degradation was assumed for transitions from Strong/Very Strong Vegetated 

status to Medium/Poor/Very Poor Vegetated spectral categorization; 

• The analysis was performed for deciduous vegetation mapped SUB-AREA 3 in 2021 

affected by ecological degradation during time. 

 

Results 

The degradation mappings for the different periods considered are reported hereafter. 

1. For the period 2002-2003 the degradation mapping is shown in Figure 40:  

 

 

 

 

 

 

 

 

 

Figure 40. Land degradation mapping for Palo Laziale SUB-AREA 3 for the period 2002-2003. 

The resulting SDG 15.3.1 indicator percentage was equal to 6.24%. 

2. For the period 2003-2014 the degradation mapping shows only improvement as 

reported in Figure 41: 

  

1:7000 

2002-2003 
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Figure 41. Land degradation mapping for Palo Laziale SUB-AREA 3 for the period 2004-2018. 

The resulting SDG 15.3.1 indicator percentage was equal to -24.25%. 

3. For the period 2014-2021 the degradation mapping is reported in Figure 42: 

 

 

 

 

 

 

 

 

 

Figure 42. Land degradation mapping for Palo Laziale SUB-AREA 3 for the period 2014-2021. 

The resulting SDG 15.3.1 indicator percentage was equal to 11.58%. 

1:7000 

2003-2014 

1:7000 

2014-2021 
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3.1 Nestos (Greece)  

The Delta of the river Nestos, one of the most important rivers in South-Eastern Europe, is an 

alluvial plain of high ecological significance for both residential and migratory wildlife. (Figure 

43). A significant feature is represented by the riparian forest: even though it has been highly 

reduced from 12,000 ha in the early 1920s to merely 2,000 ha in strips along both banks of the 

river it still remain one of the largest natural riparian forest in Greece.  

 

Figure 43. Nestos N2K sites, GR1150001 and GR1150010, in the study area. 

 

The site hosts different habitat types including priority ones such as Coastal lagoons (1150*), 

Mediterranean temporary ponds (3170*) and Alluvial forests (91E0*). 

In the period 1992-2002, a gross natural loss for agricultural purposes was observed, and 

alluvial areas were further reduced due to two large dams on the Nestos River (170 m and 95 

m in height) which reduced the river’s sediment load (Xeidakis & Delimani, 2002). The habitat 

types of Nestos are, thus, very sensitive to modifications of the hydrological cycle due to both 

direct and indirect pressures (e.g. inappropriate river management, climate change, 

respectively) since their life cycle depends on the regular alternation of wet and dry phases. For 

instance, during winter 2016-2017, some ponds held water for only about 2 months, compared 
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to the average (about 6 months), and their typical vegetation did not have the opportunity to 

complete its life cycle. On the other hand, in alluvial forest habitat (91E0*), the lack of flooding 

also means no transport of nutrient-rich sediments, which enrich the soils.  

Furthermore, the uncontrolled expansion of shrubs affects both the 3170* and the 91E0* 

habitat types. Another problem is the illegal logging and trampling that affects the forest 

structure and the temporary ponds, respectively, which has noticeably increased in recent 

years because of the economic crisis and lack of local people's awareness about their 

importance. In the end, there is also the problem of the Invasive Alien Species. The number of 

these species amounts to three (A. fruticosa, P. dioica, A. negundo), and they are outcompeting 

indigenous species, mainly in 91E0*, but also encroaching on 3170*. 

From 2018, these pressures and threats are targeted by a set of restoration interventions 

implemented by LIFE PRIMED (LIFE17 NAT/GR/000511). These measures include control by 

removal of invasive plant species, an hydraulic system to make temporary ponds more resilient 

to unmanageable river loads information boards and awareness-raising campaign to reduce 

illegal logging and trampling.  

In the early 2000s, project LIFE NESTOS (LIFE02 NAT/GR/008489) included reforestation in public 

lands along the river with indigenous species to increase the size of the forest. In total 60 ha of 

new forest were created. Parts of the reforested areas were fenced to prevent access and 

vegetation has grown abundantly. However, large portions of these areas seem to have 

deteriorated nowadays due to water lacking at river flow and rainfall levels. 

The following indices and sub-indicators, reported in Table 16, have been selected to monitor 

the pressures described above:  

Table 16. Indices and sub-indicators selected for Nestos study site. 

Sub-indicators Sensor 
Spatial 

resolution (m) 
Spatial 
frame 

Temporal frame 

LAND COVER MAP 
Landsat 30 

N2K 

2000; 2005; 2010  

Sentinel-2 10 2017; 2021   

PRIMARY 
PRODUCTIVITY* 

MAP 

VEGETATION 
PHENOLOGY 

INDEX (MSAVI2)* 
Landsat 30 2000-2018  
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PLANT 
PHENOLOGY 
INDEX (PPI)* 

Sentinel-2 10 

2017-2020  

HYDRO-PERIOD MAP 
Oct. 2017 – Sept. 2018; 
Oct. 2019 – Sept. 2020; 
Oct. 2020 – Sept. 2021 

SOIL SALINITY INDICES 2017; 2021 

STANDARDIZED PRECIPITATION 
EVAPOTRANSPIRATION INDEX (SPEI) 

 
----------- 

2019-2021 

SOC MAP 
Soilgrids+ 
LC maps 

30 
2000-2017; 2017-2021; 

2000-2021 

 

3.1.1 LC temporal trend 

Methodology 

LC mappings were obtained by a supervised data-driven approach considering ground truth 

data for training SVM classifiers acquired by expert knowledge, photointerpretation of HR 

satellite data and a vegetation map produced by Management Body of the area. A different 

SVM classifier (Huang et al., 2002; Mountrakis et al., 2011) was trained for multi-class problems, 

one for each year, due to its effectiveness in high dimensional spaces (Foody & Mathur, 2004) 

and well-suited when small training data sets are available. Following the recommendations 

reported by Othman & Gloaguen (2014), in our study a radial basis function was selected as 

kernel type while the penalty parameter chosen was taken as 100. The gamma in kernel 

function was chosen as the inverse of the band numbers used in the data input (Yang, 2011).  

Input data to the classifier consisted in a multi-temporal dataset composed of satellite time-

series images selected among those images with no cloud cover for each year considered, 

namely 2000, 2005, 2010, 2017 and 2021. From 2000 to 2010, Landsat satellite imagery was 

considered, at a 30-m spatial resolution, whereas for 2017 and 2021 Sentinel-2 satellite data, a 

10-m spatial resolution was used. We chose to produce mappings with higher spatial details 

(10 m) for recent years to allow local management authorities a more effective tool. (Tarantino 

et al; 2023).  

For each satellite image the spectral bands in the Vis–NIR–SWIR were considered, resulting in 6 

bands for Landsat 5 TM and 10 bands for Sentinel-2 A/B data.  
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Landsat data were freely downloaded from the USGS EarthExplorer portal 

(https://earthexplorer.usgs.gov/), Collection 2, Level 2, surface reflectance products, thus, 

atmospherically correct, and orthorectified using ground data by USGS. The whole N2K PA 

results covered by the track 183, frame 31 and 32, so a mosaicking step was realized after 

cropping the boundary of interest. Sentinel-2 data were freely downloaded from the ESA 

Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home) as L2A products 

which are surface reflectance and orthorectified products. Even in this case, the entire study 

area results covered by the tile 35TLF. The bands with native spatial resolution of 20 meters 

(i.e., B5, B5, B7, B8A, B11, B12) were resampled, by a Nearest Neighbour algorithm, at 10 meters 

as those natives (B2, B3, B4, B8).  

Table 17 shows the whole set of satellite imagery considered jointly with their acquisition dates. 

 

Table 17. List of satellite imagery considered for the LC mappings. 

Year Acquisition date Sensor 
Spatial 

resolution 
(m) 

Bands 

2000 
June, 6th; July, 8th; August, 25th; 
November, 13th 

Landsat 5 
TM 

30 

 
B1, B2, B3 (Vis) 

B4 (NIR) 
B5, B7 (SWIR) 

(6 bands) 

2005 
March, 16th; April, 8th; June, 4th; 
June, 27th; July, 29th 

2010 
April, 22nd; May, 1st; July, 4th; 
August, 12th; September, 22nd; 
October, 31st 

2017 
April, 26th; June, 5th; July, 15th; 
August, 14th; September, 13th 

Sentinel-2 
A/B 

10 

B2, B3, B4 (Vis) 
B5, B6, B7 (Red Edge) 

B8, B8A (NIR) 
B11, B12 (SWIR) 

(10 bands) 
2021 

March, 31st; May, 10th; June, 24th 
July, 29th; September, 2nd 

 

The images of each year, with its own bands each one, were stacked obtaining a multi-season 

raster dataset composed of 24 layers, in the case of Landsat data, or by 40 layers for Sentinel-

2 data. Among mapped LC classes, labelled according to, where possible, FAO-LCCS2 class 

taxonomy, different types of crops were identified according to their vegetated or barren cover 

(G or B, respectively, are used in the legend) in the different months. Although images from the 

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/%23/home
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same months are not always available in all the years considered, rough discrimination 

between 4 types of crops (asparagus, corn, alfalfa, wheat soft) was attempted.  

The LC class related to reafforestation interventions of poplar plants in the framework of 

previous initiatives/projects was identified and included as 

“PREVIOUS_ARTIFICIAL_POPLAR_PLANTATIONS”. Furthermore, a large part of class “NOT 

NATURAL_TERRESTRIAL_VEGETATION_TREES-SHRUBS_DECIDUOUS” mainly in the south-west 

part of the image, can be related to a mixed class composed by the human reafforestation 

(Robinia etc.) intervention, in the framework of LIFE NESTOS project, and invasive allochthonous 

species. 

 

Results 

Figure 44 shows the different LC mappings produced.  

 

 

 

 

 

 

 

 

 

 

 

  

2005 

2000 

1: 350000 

OA=83.23%±1.25% 

OA=79.68%±1.48% 
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Figure 44. LC mappings for Nestos site. 

 

Figure 45 shows several plots of the presence of several LC classes, among the most significant, 

during the period 2000-2021 to evaluate their temporal trend.  

 

 

 

 

2010 

OA=68.36%±1.88% 

2017 

OA=77.11%±0.53% 

2021 

OA=78.40%±0.52% 
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Figure 45. Plots for several significant LC classes trend vs. time. 
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The following considerations can be assessed: 

• Class “PREVIOUS_ARTIFICIAL_POPLAR_PLANTATIONS” has highly increased after 2010, 

reinforcing the efficacy of restoration activities of the last decades; 

• According to pressures and threats identified in the site, the loss of cultivated areas 

already started in 1992 has continued until 2010: an increase was revealed from 2017 

mainly of corn and alfalfa; 

• In 2017 the growth in the presence of class “BARE_AREAS”, due to a scarcely rainy winter, 

was identified, even though an adverse water limitation due to the upstream dams 

cannot be excluded; 

• In 2017, according to the lack of flooding causing no transport of nutrient-rich sediments 

for enriching the soils, a loss in the presence of class 

“NATURAL_RIPARIAN_FOREST_DECIDUOUS_HABITAT_91E0” was identified whereas in 

2021 an increase of that class could be due, probably, to improved conditions in terms 

of water availability in the topsoil; 

• In the terminal section of the river, massive hydraulic and reforestation interventions, 

including those carried out by LIFE NESTOS from 2002, have converted large patches of 

grasslands to area covered by broad-leaves deciduous (e.g. Robinia pseudocacia). These 

areas maintained a good forest cover until the early 2010s but towards 2017, they have 

been progressively replaced by evergreen woodland species, grasslands and bare soil 

(i.e., a reactivated old branch of the river, now dried up). From 2017, an overall increase 

of wetter conditions seems to have favoured an expansion of 91E0* cover in these areas.    
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Figure 46 shows in cyan colour an area in the west side of the Nestos River where A. fruticosa 

invasive species is being monitored from local experts.  

 

 

 

 

 

 

 

Figure 46. In the cyan colour rectangle, the area where A. fruticosa is being monitored.  

Some close-ups of the related LC mappings for 2017 and 2021. 

 

Comparing 2017 and 2021 LC mappings emerges that the presence of class “10_NOT 

NATURAL_TERRESTRIAL_VEGETATION_TREES-SHRUBS_DECIDUOUS”, to which A. fruticosa 

belongs to, registered an increase from 10.53% to 35.93%, respectively. This is quite in 

agreement with in-field inspection.  

 

3.1.2 PP temporal trend 

Methodology 

As for previous sites we make use of HR-VPP dataset from 2017 to 2022 with a reanalysis of the 

phenology with an harmonic model (Vicario et al. 2020). Given the very different region that 

encompasses Nestos delta we concentrate only on riparian forest 

(15_NATURAL_RIPARIAN_FOREST_DECIDUOUS_HABITAT_91E0 class) and to best appreciate the 

difference we divided the analysis in two parts: the two coastal areas and the central area 

directly influenced by the river.    

 

2017 2021 
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Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47. The mean, day of maximum and coefficient of variation of vegetation index across the 6 

years of analysis along the east to ovest gradient on the coastal line. 

 

The analysis of the coastal line shows clearly disparity between the two coasts, but the 

difference is limited today of the maximum and mean value and are stronger in some year 

as 2017.   

 

 

 

  

  

  



 

 

 

 

 

 

65 

Deliverable A2.2 “Analysis of the selected regions and pilot sites” 

 

 

 

 

 

 

Figure 48. The mean, day of maximum and coefficient of variation of vegetation index across the 6 

years of analysis along the south to north gradient on the coastal line. 

 

As it is possible to observe in Figure 49, a clear gradient is possible to observe for coefficient 

of variation and, with the exception of 2017 and 2022, while for day of the maximum we 

obtain late day in the year along the coast and the at north.  

Looking at the full image is possible to see that is not a simple gradient but it seems that 

two different riparian forests exist. One characterized by high mean value and late spring 

maximum near the river and the other with low mean and winter maximum far from the 

river and more to the north. 

 

 

 

 

 

 

 

Figure 49. Mean across the 6 years for mean of the year and day of the maximum. 

  



 

 

 

 

 

 

66 

Deliverable A2.2 “Analysis of the selected regions and pilot sites” 

 

3.1.3 SPEI temporal trend 

Methodology 

Meteo data for Nestos area comes from only one weather station starting from mid-2019. 

Two different time scales monthly and quarterly were evaluated. 

 

Results 

Looking at Figure 50, it is possible to identify the presence of values below -1 of the SPEI showing 

a tendency to aridity.  

 

 

 

 

 

               (a)                                                                (b)                             

Figure 50. Monthly and quarterly integration of SPEI index for Nestos study site. 

 

3.1.4 HydroPeriod (HP) temporal trend 

Methodology 

The Hydroperiod mapping extraction was delivered by CERTH-ITI group not part of the project 

consortium through an external assignment. 

Utilizing the WaterMask and HydroMap modules developed in H2020 ECOPOTENTIAL project 

(D6.3, http://www.ecopotential-project.eu/results/deliverables.html), CERTH provided high 

spatial accuracy hydroperiod maps of the area of interest. The WaterMask module detects 

automatically thresholds on different Sentinel-2 based inputs and on a MNDVI, derived from 

radiometrically-corrected Sentinel-2 data. Then, it combines them in a meaningful way based 

on a knowledge base coming out of an iterative trial-and-error process. This approach was 

http://www.ecopotential-project.eu/results/deliverables.html
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validated for its high performance using numerous Sentinel-2 images for Doñana and 

Camargue Biosphere Reserve areas. These inundation maps, created with the WaterMask 

module, will be further used in the HydroMap module to calculate the per pixel inundation 

regime across the given time period. This module generates a hydroperiod map from series of 

inundation maps, falling within the time period between the starting and the ending date of 

hydroperiod, by applying an interpolation approach.  

One of the limiting factors when using Sentinel-2 data for creating the inundation maps is the 

cloud coverage of the areas of interest. Cloud coverage may impact the correct classification of 

the inundated areas and introduce noise or prohibit the creation of an inundation map 

completely. To further overcome this obstacle, CERTH devised a novel machine-learning fusion 

approach to generate inundation maps under all circumstances by combining Sentinel-1 and 

Sentinel-2 images. By taking advantage of the Sentinel-1 data more precise and not affected by 

the cloud cover presence (MW spectrum) and accurate inundation maps and hydroperiods may 

be created, but at the same time the processing time and complexity of the methods increases, 

while the accuracy drops by a few percentages. 

WaterMasks module: 

• Input: Sentinel-2 intra-annual time-series multispectral data (possibly also Sentinel-1); 

• Output: Inundation map (watermask) as a GeoTIFF file containing the classification of 

the area into inundated and non-inundated classes. An additional option for detecting 

emergent vegetation (wetland) areas is also offered.  

HydroMap module: 

• Input: A time series of inundation maps (watermasks) 

• Output: Hydroperiod as a GeoTIFF file containing the total number of inundated days for 

the time period (per pixel). 

The period considered started from October to September according to the rainfall cycle for 

the three years: 2017-2018; 2019-2020 and 2020-2021. 

 

Results 

Figure 51 shows the water cover mapping for June, 9th 2021. 
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Figure 51. Water Cover mapping of July, 9th 2021 for Nestos study site. 

 

In Figure 52 some temporal trends related to water presence in each year considered are 

shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52. Temporal trend of Water Cover mappings for each year. 
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, 2021 

1: 350000 



 

 

 

 

 

 

69 

Deliverable A2.2 “Analysis of the selected regions and pilot sites” 

 

Figure 53 shows the comparison of the three temporal trends considered related to water 

presence in each year and the average annual water presence. 

 

 

 

 

 

 

 

Figure 53. Monthly temporal trend comparison of annual Water Cover mappings for the 

three years considered. 

From the analysis the following results can be assessed: 

• The period 2019-2020 registered an average water presence below the average of the 

previous and successive year; 

• December 2019 results particularly poor in terms of water presence; 

• The peak of water presence for 2019-2020 remains lower than the other years. 

 

Figure 54 shows an hydroperiod mapping reporting the number of days of the year with water 

presence for 2020-2021. 

 

 

 

 

 

 

 

Figure 54. Hydroperiod mapping for 2020-2021 
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3.1.5 Soil Salinity (SS) temporal trend 

Methodology 

SS indices mapping was, also, delivered by CERTH-ITI group. Sentinel-2 mission imagery, only 

for those areas covered by herbaceous vegetation or bare soil in order to extract the soil 

response, were taken into account for the years 2017 and 2021. Specifically, after producing 

the LC maps for the study areas and identifying the areas covered by herbaceous vegetation or 

bare soil, different SS indices from the combination of appropriate spectral band reflectance 

values, as described in the literature, were computed and consequently SS index maps were 

produced.  

According to the literature, SS indices can be derived from algebraic or Boolean combinations 

of the reflectance values of the Sentinel-2 mission bands. The following 5 indices were 

calculated and compared (non-exhaustive list of possible types, see Deliverable A2.1): 

• SS Index-1 (SSI1) = √𝐺𝑅𝐸𝐸𝑁 (520 − 600𝑛𝑚) ∗ 𝑅𝐸𝐷(630 − 690𝑛𝑚) 

• SS Index-2 (SSI2) = 2 ∗ 𝐺𝑅𝐸𝐸𝑁 (520 − 600𝑛𝑚) − (𝑅𝐸𝐷 (630 − 690𝑛𝑚) + 𝑁𝐸𝐴𝑅 𝐼𝑁𝐹𝑅𝐴𝑅𝐸𝐷 (770 −

900𝑛𝑚)) 

• SS Index-3 (SSI3) = √𝑅𝐸𝐷 (630 − 690𝑛𝑚)2 ∗ 𝐺𝑅𝐸𝐸𝑁 (520 − 600𝑛𝑚)2 

• SS (SI) = 
(𝐺𝑅𝐸𝐸𝑁 (530−590𝑛𝑚) ∗ 𝑅𝐸𝐷 (640−670𝑛𝑚))

𝐵𝐿𝑈𝐸 (450−510𝑛𝑚)
 

• Adapted SS Index (SASI) = 
𝑅𝐸𝐷 (630−690𝑛𝑚)

100 ∗ 𝐵𝐿𝑈𝐸 (450−520𝑛𝑚) 2 

where BLUE, GREEN, RED, NEAR INFRARED are the values of reflectance of each pixel at the 

corresponding wavelengths, as they are mentioned in the parentheses. 

The acquisition date of Sentinel-2 images considered are reported in Table 18: 

Table 18. Date of satellite imagery considered for SS index computation. 

Year Acquisition date Sensor Spatial resolution (m) 

2017 August, 14th Sentinel-2 
A/B 

10 
2021 September, 2nd 

 

Results 

All the different SS indexes seem having the same signal dynamics, hence, SI was preferred 

for its formulation as a ratio, so it can allow a sort of balance between the bands. 
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Furthermore, it considers the more common spectral bands combination (GREEN*RED) 

among the indices analysed. SASI differs from the other for its values less than 1. 

Figure 55 shows the two SS index mappings extracted. 

 

 

 

 

 

 

 

 

Figure 55. Temporal trend comparison of annual Water Cover mappings for the three 

years considered. 

From the mappings the highest values of SS can be appreciated in several areas along the 

river as well as along the sea coastline. 

 

3.1.6 SOC temporal trend 

Methodology 

The extraction of SOC temporal trend was performed by following the same procedure as for 

Alta Murgia site (section 2.1.5). 

 

Results 

The periods reported in Table 19 were considered for SOC temporal trend mappings. 

 

  

2021 
2017 

𝑆𝐼 =
𝐺𝑟𝑒𝑒𝑛 ∗ 𝑅𝑒𝑑
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Table 19. List of periods considered for the SOC temporal trend mappings and results. The 

percentage is related to the whole dry land (21027 ha). 

Period 
Spatial 

resolution (m) 
Objectives Degradation Improvement 

2000-2021 

30 

long-term monitoring 
1928 ha 
(9.17%) 

1815 ha  
(8.63%) 

2000-2017 
before meteo dry conditions (2017) 

effects  

1581 ha 
(7.52%) 

1630 ha  
(7.75%) 

2017-2021 10 
short-term monitoring/after meteo 

dry conditions (2017) effects 
38 ha  
(0.2%) 

132 ha  
(0.65%) 

 

Figure 56 shows the SOC temporal trend mappings produced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56. SOC degradation mappings produced for Nestos. 
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The following considerations can be obtained: 

• On long-term period, from 2000 to 2021, high SOC degradation can be evaluated; 

• The main degradation happened from 2000 to 2017. 

 

3.1.7 SDG 15.3.1 computation and land degradation mapping 

Methodology 

In the computation of SDG 15.3.1 indicator for Nestos trend in LC, PP, SOC, HP and SS were 

considered. 

Hence, SDG 15.3.1 indicator computation for Nestos followed the same steps described in sub-

section 2.1.6 with the following specific choices: 

• temporal ranges to be monitored: 2000-2017 (period before meteo dry conditions of 

2017) and 2017-2021 (period after meteo dry conditions of 2017); 

• a spatial scale of 30-meters; 

• only the trend for NATURAL_RIPARIAN_FOREST_DECIDUOUS_HABITAT_91E0 (the class of 

main interest) was considered; 

• for the additional sub-indicators, the following range values were considered: 

✓ HP mapping: all the pixel with values lower than 240 days 

(corresponding to 8 months without water) were considered 

degraded (dry areas) even though information about specific month 

and quantity of meteo precipitations would be required; 

✓ SS mapping: all the pixel with values greater than 1000 (empirically 

corresponding to areas along the sea coastline) were considered 

degraded (dry areas); 

• A(Total) is the total riparian forest at t0=2000. 

 

Starting from Pheonology data and using the mean annual output we can estimate PP for SDG 

15.3.1 computation. As for phenology we keep separate the river itself from the coast. Over the 
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6 years available with HR-VPP we defined as baseline the first 3 (2017-2019) and under analysis 

the second group of 3 (2020-2022)  

The coast has a strong change of habitat riparian forest 55% that disappear between LC 

mappings for 2017 and 2022. 

This large change does not impact the productivity sensu 15.3.1 where in fact the vast majority 

of pixel, more than 90% stay with a stable outlook. 

Table 20. Percentage of pixels of riparian forest in the three categories (only 2021, [01], only 2017 [10] 

or present in both survey [11]). 

 

 

 

 

 

 

Table 21. Percentage of pixels in the different score categories across the 3 riparian forest categories 

along the coast. 

 

 

 

 

 

 

 

 

 

 

For the river part the outlook is more problematic, with 60% of pixel that have lost in 

productivity and only 3% that have some gain. The impact of change of LC do not impact this 

signal. 

  

Hectares 

01 0.554578 

11 0.244219 

10 0.201203 

 01 10 11 

Productivity 

-1.0 4.69 7.15 5.21 

0.0 91.73 91.00 91.54 

1.0 3.59 1.85 3.26 

Trend 

-1.0 0.92 3.99 1.72 

0.0 95.50 94.17 95.02 

1.0 3.59 1.85 3.26 

State 

-1.0 1.37 0.68 0.23 

0.0 78.41 86.78 96.18 

1.0 20.22 12.54 3.59 

Performance 

-1.0 53.22 57.19 49.17 

0.0 
46.78 42.81 50.83 
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Figure 57. The State sub-indicator. 

Table 22. Percentage of pixels in the different score categories across the 3 riparian forest categories 

along the river. 

 

 

 

 

 

 

 

 

 

 

Results 

The degradation mappings for the different periods considered are reported hereafter. 

1. For the period 2002-2017 the degradation mapping is shown in Figure 58:  

  

 01 10 11 

Productivity 

-1.0 58.19 59.23 64.64 

0.0 37.79 37.72 32.34 

1.0 4.02 3.05 3.03 

Trend 

-1.0 58.19 59.23 64.64 

0.0 37.79 37.72 32.34 

1.0 4.02 3.05 3.03 

State 

-1.0 60.03 61.93 67.46 

0.0 35.84 34.27 29.24 

1.0 4.14 3.79 3.30 

Performance 

-1.0 56.56 43.19 29.55 

0.0 
43.44 56.81 7.045 
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Figure 58. LD mapping for Nestos for the period 2000-2017. 

The resulting SDG 15.3.1 indicator percentage was equal to 69.05%. 

2. For the period 2017-2021 the degradation mapping is reported in Figure 59: 

 

 

 

 

 

 

 

(a)                                              (b) 

Figure 59. LD mapping for Nestos for the period 2017-2021. (a) Mapping without “Persistent 

Degraded”; (b) Mapping with “Persistent Degraded”. 

The resulting SDG 15.3.1 indicator percentage was equal to 50.80% for Figure 59.a and to 

52.38% for Figure 59.b.  

1:150000 

2017-2021 

1:150000 

2017-2021 
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3.2 Asterousia (Greece)  

The Asteroussia Mt range is located along the southern coastline of Crete. Four subset areas 

will be analysed in the project (red boundaries in Figure 60).  

 

Figure 60. Asterousia site. The four subset areas analysed are overlaid in red boundaries. 

 

The most important land cover types are natural grasslands, sclerophylous vegetation, 

transitional woodland-shrubland, and sparsely vegetated areas. Natural vegetation consists 

mainly of shrubs and some isolated maquis and pine forests. In areas with relatively deep soils, 

old vineyards and continuously expanding greenhouses and olive groves are present.  

The Asteroussia Mt range climatic conditions, with long, dry summers and high evapo-

transpiration rates, favor desertification. The loss of productive, arable land from soil erosion 

and degradation and the over exploitation of aquifers are among the key factors posing a 

desertification risk for the site which is, subsequently, further intensified by climate 

deregulation and raising global temperatures. 

The key pressures and main land degradation processes affecting the study area are: a) decline 

in vegetation cover/biomass and over grazing resulting from the increase of livestock numbers; 

b) landscape modification, soil erosion and soil organic matter decline due to anthropogenic 
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interventions such as installation of new olive groves and greenhouses, opening of new roads, 

expansion of coastal tourism settlements, installation of Renewable Energy Sources facilities; c) 

accidental or intentional (for scrubland clearance) wildfires; d) hydrological modification; e) soil 

salinization due to overexploitation of aquifers. 

The following indices and sub-indicators, reported in Table 23, has been selected.  

Table 23. Indices and sub-indicators selected for Asterousia study site. 

Sub-indicators Sensor Spatial 
resolution (m) 

Spatial 
frame 

Temporal frame 

LAND COVER MAP*  
BURN SEVERITY MAP* 

Landsat 30 

4 sub-
areas 
within 
N2K 

 

2000; 2005; 2010  

Sentinel-2 10 2017; 2021  

PRIMARY 
PRODUCTIVITY 

VEGETATION 
PHENOLOGY 
INDEX (NDVI) 

MODIS 250 2000-2021  

SOIL SALINITY INDICES Sentinel-2 10 2017; 2021 

 

3.2.1 LC temporal trend 

Methodology 

The analysis of land cover maps has been carried out for the years 2000, 2005, 2010, 2017 and 

2021. They have been generated by automatic classification processes of images obtained from 

Landsat series satellites (mainly Landsat-5 and 8) for the years 2000 to 2017, through their TM, 

ETM+, OLI and MSI sensors. The 2021 maps have been generated using Sentinel-2A and 2B data 

(tile 31TCG) and the same classification methods (González-Guerrero et al., 2019).   

Three types of algorithms have been tested, EODESM, ClasMix and kNN. Best results have been 

obtained from kNN classification. Therefore, these images, as well as the vegetation and 

moisture indices, were classified using the kNN algorithm to obtain a map with 5 categories 

(Table 24): Bare soil, Crop, Dense woody vegetation, Sparse woody vegetation and grassland. 

For the training of the classifier and the subsequent validation of the output map, a set of 

training and test areas collected by visual interpretation of the available orthophotos was 

considered. Validation of the result of the 2021 LC map was performed by computing a 

confusion matrix to evaluate the result of the classification (Table 25). 
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Table 24. Categories of the cover map. 

Name category Description 

Bare soil or rock Surface covered by rock or soil with no or very limited 
vegetation. 

Crop 
Cover corresponding to agricultural crops mainly 

without large woody vegetation. 

Dense woody vegetation (DWV) 
Surface area with abundant woody vegetation 

(maquis, pine forests, sclerophyllous vegetation and 
old tree crops) 

Grass 
Area with a predominance of pastures and no woody 

vegetation. 

Spears Woody vegetation (SWV) 
Surface with presence of scattered woody and 

sclerophyllous vegetation. 

 

Results 

Table 25 reports the confusion matrix obtained for validation of LC mapping for 2021. 

Table 25. Confusion matrix for Asterousia LC of 2021. 

 
Bare 

soil 

Rock 

Crops DWV Grassland  SWV Total 
Commissio

n error 

User 

accuracy  

 

Bare soil 

Rock  

1723 156 0 92 456 2427 29.01 70.99 

Crops 16 146 1 33 55 251 41.83 58.17 

DWV 
0 0 420 28 46 494 14.98 85.02 

Grassland  0 5 5 5 196 211 97.63 2.37 

SWV 18 7 74 30 2866 2995 4.31 95.69 

Total 1757 314 500 188 3619 6378   

Omission 

error 

1.94 53.5 16 97.34 20.81  Overall 
success: 

80.90% 

Producer 

accuracy  

98.06 46.5 84 2.66 79.19  Kappa 
Index: 

0.69 

 

The analysis of temporal LC trends performed in this area shows the following trends for the 

specific LC categories (Figure 61). The detail of the cover mapping for 2021 can be seen in Figure 

62. 
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Figure 61. Land cover maps generated. Background image: cloudless Sentinel-2 

composition 2021.  
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Figure 62. Detail of the LC map for 2021 in the Δάσος Τρυπητών/Trypiton Forest sector. 

Background image: cloudless Sentinel-2 composition 2021. 

From the temporal trend analysis (Figure 63 and Table 26) for the LC classes, the following 

considerations can be evaluated:   

- In general the predominant cover is SWV, with a decay of occupancy over time, while 

bare ground or rock cover, increases in area over time; 

- There is an increase in crop fields in 2010, where it coincides with a decrease in 

grassland and sparse woody vegetation;    

- The dense woody vegetation category is maintained with a slight increase in area in 

2021, as well as the grassland category;  
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- As shown in the confusion matrix, the grassland category is confused with the bare soil, 

crop fields and sparse woody vegetation categories. 

 

Table 26. LC categories (ha) for each year at Asterousia pilot area. 

 2000 2005 2010 2017 2021 

Bare soil 

Rock  

3228.93 3574.71 3559.5 3716.37 4420.70 

Crops 1894.23 1505.88 2389.41 1431.54 1221.51 

DWV 
1627.56 1594.44 1622.97 1757.43 1923.74 

Grassland  102.33 246.15 93.87 238.41 618.89 

SWV 9431.19 9363.06 8618.49 9094.05 8053.29 

 

 

Figure 63. Temporal trend of LC classes presence. 

This research also showed that automatic classifications based on EODESM system 

(http://www.ecopotential-project.eu/products/eodesm.html) in this type of areas present very 

low thematic detail. For these areas, it is recommended to use other classification systems such 

http://www.ecopotential-project.eu/products/eodesm.html
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as kNN or ClasMix approach, although these algorithms require training areas and test areas 

that are not always available, specially from the past. In this case, the lack of validated training 

data returned low accuracy maps for some categories that are essential for monitoring 

degradation, although the overall accuracy was 80%. 

 

3.2.2  PP temporal trend 

Methodology 

Primary productivity trends have been computed using Trends.Earth plugin for QGIS, based on 

MODIS annual product (MOD13Q1) at 250 m spatial resolution for the period 2000-2021.  

Results 

The results show that only for one of the sub-areas, productivity trend is on degradation 

process (Figure 64).  

 

 

 

 

 

 

 

 

 

Figure 64. PP temporal trend for the period 2000-2021. 
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3.2.3 SS temporal trend 

Methodology 

Production of SS index maps has been done by CERTH-IT taking into account data from the 

Sentinel-2 mission and Landsat-8, specially in those areas covered by herbaceous vegetation or 

bare soil for years 2017 and 2021. Five different salinity indices were calculated:  

• Soil Salinity Index 1 (SSI1), Soil Salinity Index 2 (SSI2), Soil Salinity Index (SSI3), Soil Salinity 

(SI), Adapted Soil Salinity Index (SASI).  

The time period proposed and selected for the calculation of the indices is between mid-August 

and early September (see Table 27), when the most arid climatic conditions prevail for the study 

areas. 

Table 27. Dates of satellite images received for the calculation of salinity indices. 

Satellite images and sensor Study area Date 

Landsat-8 Asterousia 02.09.2017 

Sentinel-2 Asterousia 25.08.2021 

 

Results 

SS indexes present different sensitivity to the area. While SASI results are less sensitive (very 

small range with values less than 1), SSI1 and 3 are very similar and SS2 is slightly different 

presenting less accurate results (Figure 65). SI results are similar to SSI1 and SSI3 but more 

contrasted, so it is recommended as the performance index. In addition, SI is preferred for its 

formulation as a ratio, so it can allow a sort of balance between the bands. Furthermore, it 

considers the more common spectral bands combination (GREEN*RED) among the indices 

analysed. 

  



 

 

 

 

 

 

85 

Deliverable A2.2 “Analysis of the selected regions and pilot sites” 

 

 

 

 

 

 

 

 

 

 

 

Figure 65. SI mappings for 2017 and 2021. 

From the mappings the highest values of SS can be appreciated in 2017 mainly located along 

the sea coastline and partially along river course. 

 

3.2.4 SOC temporal trend 

Methodology 

The computation of SOC trend for a given period is estimated from the LC changes identified 

in this period and adjusted based on the SoilGrids SOC data from 2016. Since the accuracy of 

LC classifications obtained is quite low, the results obtained for the SOC will also include a high 

uncertainty and will not be reliable.  

Therefore, it is recommended that SOC trends will only be computed if LC maps present good 

accuracy indicators. 
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3.2.5 SDG 15.3.1 computation and land degradation mapping 

Methodology 

The calculation of SDG 15.3.1 for Asterousia is modified based on the procedure included in the 

UNCCD guidelines, since no SOC trend is available. Therefore, SDG has been computed only 

considering 2 sub-indicators for the period 2000-2021, the LC trend and the PP trend containing 

3 categories: stable, improved, degradation. LC sub-indicator has been computed using the 

baseline maps presented in section 3.2.1 at spatial resolution of 10 m. PP has been computed 

using Trends.Earth plug-in for QGIS software, based on MODIS annual product (MOD13Q1) at 

250 m spatial resolution. In order to proceed with the integration of the 2 sub-indicators, PP 

sub-indicator has been resampled to 10 m using nearest neighbour algorithm, since it is a 

categorical map.  

The SDG 15.3.1 indicator presents 3 categories: Loss, Gains and No change. The sub-indicators 

integration decision criteria were based on the “one-out, all-out” rule. If any of the two sub-

indicators presented degradation for a given pixel, the final category should be Loss. 

 

Results 

The land degradation mapping obtained for 2000-2021 for Asterousia is shown in Figure 66.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 66. Modified SDG 15.3.1 indicator for Asterousia region for 2000-2021. 
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Once the indicator obtained, the proportions of land that is degraded over the total land area 

was also computed. A 27.19% of the area present degradation for the period 2000-2021, a 

53.02% present improvement and the rest 19.74% do not present changes in terms of 

degradation. 
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4.1 El Bruc (Spain)  

The regions of Anoia and El Bages suffered a serious fire in July 2015, which burned 1,235 ha 

around the municipality of El Bruc, on the perimetral area of the Montserrat Natural Park 

(included in the Montserrat-Roques Blanques-riu Llobregat N2K site, with code ES5110012). The 

area affected by the fire is located in the central area of Catalonia (Spain) (Figure 67), 

characterized by a dry sub-humid climate. A large part of the burned forest was an Aleppo pine 

forest, which had already suffered a fire in 1986. The pines - which do not have a regrowth 

strategy, but rather germinate - are having a modest and variable regeneration throughout the 

region. Within the framework of the LIFE The Green Link project (LIFE15 CCA/SE/125), more than 

20 ha of forest and agricultural species were planted (>4,000 seedlings) to recover the most 

degraded areas and favour the recovery of the agro-silvo-pastoral mosaic, which helps reduce 

the vulnerability of the area facing upcoming forest fires (Figure 68). 

 

Figure 67. a) General location of Anoia region in Catalonia, Spain; b) Location of “El Bruc” 

municipality (blue polygon) in the context of Anoia region, Monserrat Natural Park limits 

(green) and area affected by 2015 forest fire (rose); c) Limits of the area affected by 2015 

forest fire represented in 1:50.000 topographic map (ICGC, 2021).  
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Figure 68. Location, limits (red polygon) and MDE of El Bruc pilot area. 

There is an average of less than 50 days of rain per year, with frequent periods of drought and 

water stress by the plants, which have been increased in recent years. Due to this factor, as well 

as the high recurrence of forest fires, it presents areas with low natural regeneration and 

affected by processes of concentrated and diffuse erosion. In addition, like many areas of the 

Mediterranean, and especially of the Iberian Peninsula, this area is affected by rural 

abandonment since the beginning of the 19th century, which has caused an expansion of the 

shrubland and forest, mainly of Aleppo pine, which increases the risk of large forest fires. The 

clearings in Aleppo pine reforestation not only help the regeneration after fires or other 

disturbances, but also promote the good structure and dynamics of the forest and the 

regeneration after severe drought events (Keenan, 2015). A set of indices and sub-

indicators were selected to monitor the pressures and processes described above (Table 28). 

Table 28. Indices and sub-indicators selected for El Bruc study site. 

Sub-indicators Sensor 
Spatial 

resolution (m) 
Spatial 
frame 

Temporal frame 

LAND COVER MAP 
Landsat 30 

N2K 
+5 km 
buffer 

1987; 1992; 1997; 
2002; 2007; 2012 

Sentinel-2 10 2017; 2021   

PRIMARY 
PRODUCTIVITY 

PLANT 
PHENOLOGY INDEX 

(PPI) 
Sentinel-2 10 2017-2020  

BURN SEVERITY MAP 
Landsat 30 

2015 
Sentinel-2 10 

SOC Landsat/Sentinel-2 10 2007-2017 

STANDARDIZED PRECIPITATION 
EVAPOTRANSPIRATION INDEX (SPEI) 

Meteorological 
stations  

  1950-2019  
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4.1.1 LC temporal trend 

Methodology 

Analysis of land cover maps was performed for years 1987, 1992, 1997, 2002, 2007, 2012, 2017 

and 2021. They have been generated by automatic classification processes of images obtained 

from the Landsat series satellites (mainly Landsat-5/7/8) for year 1987 to 2012, through their 

TM, ETM+, OLI and MSI sensors and the incorporation of auxiliary information. In the case of 

the 2007 and 2012 maps this auxiliary information comes from the Urban Map of Catalonia and 

the DTES Road Chart, as well as from the Forest Fire Cartographic Base of the Department of 

Agriculture, Livestock, Fisheries and Food and the ICGC LIDARCAT base. Maps of 2017 and 2021 

have been generated using Sentinel-2A and 2B data (tile 31TCG) and the same classification 

methods (González-Guerrero et al., 2019). Bands with native spatial resolution of 20 meters 

(i.e., B5, B6, B7, B8A, B11, B12) were resampled, by a Nearest Neighbour algorithm, at 10 meters 

as those native (B2, B3, B4, B8). For 2017 classification, six images distributed between March 

and September 2017 were selected to obtain a good representation of the phenological 

dynamics of natural vegetation and crop covers (Moré and Pons, 2007). For 2021 classification, 

21 images were considered. Table 29 shows the whole of satellite imagery considered for the 

2017 and 2021 classifications with their acquisition dates. 

Table 29. List of imagery from Sentinel-2 satellite considered for the LC mappings. 

Year  Acquisition date  Sensor  Spatial resolution (m)  Bands/features  

2017  

March, 17th  

April, 6th  

May, 26th  

July, 7th  

August, 14th  

September, 13th  

Sentinel-

2 A  

10  

B2, B3, B4 (Vis)  

B5, B6, B7 (Red Edge)  

B8, B8A (NIR)  

B11, B12 (SWIR)  

(10 bands)  

NDVI, NDWI 1 and NDWI2  

2021  

February, 1st;  

February, 19th  

March, 16th  

March, 23rd  

March, 31st  

April, 5th  

May, 5th  

June, 9th  

June, 14th  

June, 24th  

July, 14th  

July, 19th  

August, 13th  

August, 18th  

August, 28th  

September, 27th  

October, 22nd  

November, 6th  

November, 18th  

December, 11th  

December, 31st  

Sentinel-2 

A/B  
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These images, as well as texture variables, terrain models derived from LIDAR processing and 

vegetation and wetness indices, were classified using the kNN to obtain a map with 25 

categories (Table 30). The categories related to urbanized areas (urban areas, urbanizations 

and industrial zones/commercial areas), road infrastructures and burned areas were edited 

using official cartographic datasets of the Catalan Government. A set of training areas collected 

through visual interpretation of available orthophotos and distributed with a “stratified” 

sampling to ensure a minimum number of polygons–samples for each class (i.e., stratum) 

(Congalton et al., 2014) were considered for training the classifier and subsequent validation of 

the output map.  

 

Results 

The results have an overall accuracy greater than 98 %, which was evaluated with a set of more 

than 8.6 million independent test pixels. 

Table 30. LC classes legend. 

 

 

 

 

 

 

 

The analysis of temporal LC trends performed in this area shows the following trends for the 

specific LC categories (Figure 69, Table 31). 
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Figure 69. Land cover maps generated. 

Table 31. LC categories (ha) for each year at El Bruc pilot area. 

  CLASSES 

F
IR

E
 E

V
E

N
T

 

1987 1992 1997 2002 2007 2012 

F
IR

E
 E

V
E

N
T

 

2017 2021 

Low density urban areas      1.8 1.8 1.77 1.16 

Rainfed herbaceous crops  4.95  3.87 3.6 8.55 14.22 28.65 19.52 

Rainfed fruit trees   0.9 1.17 1.08     

Irrigated herbaceous crops        0.02  

Shurblands  12.69 223.65 216.18 214.74 146.16 165.33 106.47 162.02 

Low altitude grasslands        86.26 36.27 

Sclerophyll forests      3.51    

Deciduous forests        0.5  

Needleleaved forests    3.333 5.13 64.53 43.2 0.6 6.53 

Areas with low/no vegetation        1.23  

Burned area  206.61        
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Figure 70. Temporal trend of LC classes presence. 

From the analysis of the temporal trend (Figure 70) for the LC classes in the area where 

restoration practices were performed, the following considerations can be evaluated:  

• After both fires in 1987 and 2015, shrublands were progressively recovered after 5 years;   

• Increase of shrublands in 2021 agrees with decrease of low altitude grasslands that 

suddenly appeared after the 2015 fire event;   

• Unfortunately, needleleaved forests need more than 15 years to achieve the same 

mature growth than before the fire-event.   

• After 1987 fire, needleleaved forests start to recovery around 2007. Following 2007, two 

strong drought events occurred, increasing the mortality of such species. Finally, in 2015, 

the last fire drastically decreased the needleleaved forests of the area. 

In terms of Land cover degradation and following the transitions defined by the UNCCD 

protocol (degradation, stable or Improvement), the evolution of LC of the study area between 

2007 and 2017 (before and after the fire event) is showed hereafter (Figure 71): 
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Figure 71. LC evolution in the period 2007-2017. 

Changes inside the fire perimeter indicate that around 41% of the area has suffered a 

degradation process, although in 2017 part of it has already recovered.  It is noteworthy that 

the LC degradation computation using Trends.Earth plugin for QGIS reclassifies the original land 

cover types to 7 categories: grassland, cropland, tree cover, water, artificial wetlands and other 

lands, but there is not a category related to shrublands or maqui, which should be considered 

different from tree cover and moreover are a land cover very characteristic for Mediterranean 

areas. 

 

4.1.2 BS temporal trend 

Methodology 

El Bruc area suffered a big fire event starting in July, 26th 2015 that affected the study area. An 

analysis to identify the fire-affected area has been performed using the burn severity mapping, 

according to Nasery & Kalkan (2020), through the computation of NBR spectral indices 

(Deliverable A2.1). The NBR has been calculated for a satellite image just before the event and 

just after the event. Following, the difference between the former and the latter NBRs (dNBR) 

has been also computed as indicator of burn severity. The analysis has been carried out using 
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both Landsat and Sentinel-2 images, as a way to compare the results. The list of images 

considered is included in Table 32. 

Table 32. List of satellite imagery considered for the BS mappings. 

Year  Acquisition date  Sensor  Spatial resolution (m)  Bands  

2015  
July, 18th 

August, 3rd 
Landsat 8   30  

B4 (NIR)  

B7 (SWIR)  

2015  
July, 16th 

August, 2nd 
Sentinel-2 A  10  

B8A (NIR narrow)  

B12 (SWIR)  

 

Results 

Table 33 and Figure 72 show the different burn severity levels and the mappings obtained.  

Table 33. Classification table of severity level based on dNBR range. 

SEVERITY LEVEL dNBR RANGE 

Enhanced Regrowth  < -.1 

Unburned  -.1 to +.1 

Low Severity  +.1 to +.27 

Moderate Severity  +.27 to +.66 

High Severity  > .66 

 

 

 

 

 

 

 

 

 

 

 

Figure 72. BS mapping for Landsat- 8 on July, 18th 2015 (pre-fire) and August, 3rd 2015 (post-fire) and 

Sentinel-2 (pre-fire) and (post-fire).  
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From the analysis of the burn severity mapping, it can be concluded:  

• The whole restoration area was affected by the 2015 forest event;  

• The severity level of forest event in the restoration area was from moderate to high 

severity;  

• NBR computed based on Landsat data or Sentinel data shows significant differences. 

These differences might be due to the differences of the atmospheric corrections 

applied to the different sensors. Sentinel-2 derived data shows higher values than 

Landsat data; 

• The NBR index can be a powerful tool to identify pixels that have a high likelihood or 

being “burned” but it also shows false positives that should be considered. 

4.1.3 PP temporal trend 

Methodology 

PP has been analysed based on the Copernicus HR-VPP product. TPROD for the 4 available 

years (2017-2020) has been downloaded from WeKEO platform and combined with the area of 

the study to monitor its productivity trends. First year of analysis correspond to 2017, two years 

after the fire event. Unfortunately, since these data is derived from Sentinel-2, data prior 2017 

(launch time) is not available.  

 

Results 

Figure 73 illustrates the TPROD product and Table 34 and Figure 74 quantitatively analyse the 

results. 

Table 34. Statistics of all pixels included in the study area. 

  2017 2018 2019 2020 

Mean 447.8692 773.5122 719.0976 989.9331 

St. Dev 266.2838 368.8852 323.5487 396.0033 

Minimum 0 0 2 37 

Maximun 3689 3692 3717 3733 

1st quartile 290 559 515 733 

Media 393 762 671 945 

3rd quartile 519 982 880 1202 
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Figure 73. TPROD. The growing season integral computed as sum of all daily values minus  

their base level value (units: PPI * day). 

 

The trend of productivity clearly increases with time (R2=0.80). An important aspect to highlight 

is that although the minimum and the maximum productivity values remain almost constant, 

the 1st and 3rd quartiles increase significantly with time. This is an indicator of recovery of 

vegetation in the area. 
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Figure 74. Trends of mean, min, max, 1st quartile and 3rd quartile of TPROD of the area. 

 

From the analysis of TPROD, it can be concluded that:   

• HR-VPP TPROD is an interesting product to monitor the evolution of a degraded 

vegetation area; 

• This product demonstrates that data derived from Sentinel-2 is sensitive enough to 

vegetation productivity changes and should be considered as an essential indicator for 

monitoring desertified areas.  

 

4.1.4 SPEI temporal trend 

Methodology 

The evaluation of SPEI for El Bruc has also been performed as an indicator of water availability 

for vegetation and for monitoring the phenomena of dryness by evaluating three different time 

monthly scales (3, 6 and 12-months) (Figure 75). This index is based on the ratio between 

precipitation and potential evapotranspiration. Original data belongs to hundredths of 

meteorological stations located in Catalonia collecting precipitation and temperature from 

1950 to 2019 (Domingo-Marimon, 2016). Precipitation and mean temperature data have been 

interpolated at 100 m spatial resolution for the full region (32,000 km2) and spatialized data 

used to compute the SPEI index.   
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Results 

The independent test result RMSE had a median of 23.5 l/m2 for precipitation and 1.2ºC for 

mean temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 75. SPEI_3, SPEI_6 and SPEI_12 trend analysis for the study area. 

 

Results show a clear increasing tendency of drought events that are more evident when long 

SPEI time lags are analysed. Indeed, 1987 and 2015 fire events occurred during a drought event 

window, thus accentuating the fire severity and its consequences for vegetation recovery. After 
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these two fire events, only one quite long wet window period (from 1993 to 1997 approximately) 

occurred. A braking point or tipping point is also identified from these results, as a moment of 

trend change around 1985. This result agrees with the one identified by Carnicer et al., (2019) 

who identified a tipping point break around 1985. The analysis of several SPEI time scales 

results essential for characterizing the climate desertification trends of the area and easily 

identify the periods with water scarcity. The identification of these periods will be useful to plan 

restoration practices implementation.  

 

4.1.5 SOC temporal trend 

Methodology 

The extraction of SOC temporal trend was performed by using Trends.Earth plugin within the 

open-source QGIS tool according to Giuliani et al. (2020). The most recent (update in June 2016) 

and improved version of SoilGrids (Hengl et al., 2017) has been used as the reference map 

product requested by the plugin. Such map was produced at 250 m spatial resolution and 

assessed for organic carbon and other soil properties available under the Open Data Base 

License. This product was primarily derived from MODIS satellite land products, SRTM DEM 

derivatives, climatic images and global landform and lithology maps by a machine learning 

supervised approach. In order to compute the trends of SOC, the software needs two different 

LC mappings to be compared, which are initially reclassified in 7 main classes: cropland, tree-

covered, grassland, artificial, water body, other land, no data. For El Bruc case study, 2007 and 

2017 has been used to be consistent with the other products. Then, according to specific 

coefficients related to the type of LC transition, a SOC map is produced for each LC map and, 

lastly, the SOC temporal trend mapping between the two years considered can be computed. 

For SOC losses greater than 10% soil degradation is considered.  

Results 

The resulting map of SOC degradation is the following Figure 76: 
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Figure 76. SOC degradation mappings produced for El Bruc. 

The following considerations can be obtained:  

• A total area of 24.6 % is considered in process of degradation;  

• The major degradation process has occurred in areas that were shrublands or forest 

before the fire event; 

• The areas that have improved mainly correspond to crops (Figure 77)  

 

 

 

 

 

 

 

 

Figure 77. Overlay of ortophoto from 2015 and SOC degradation map. Purple areas are degraded 

areas mainly corresponding to forested areas while greenish areas are improving and correspond 

mainly to crops.  
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4.1.6 SDG 15.3.1 computation and land degradation mapping 

Methodology 

The calculation of SDG 15.3.1 for El Bruc has been done following the UNCCD guidelines. The 3 

sub-indicators have been computed for the period 2007-2017, just after the main fire in 2015, 

obtaining 3 categorical maps with categories: stable, improved, degradation. LC sub-indicator has 

been computed using the baseline maps presented in section 4.1.1 at spatial resolution of 30 

m. PP has been computed using Trends.Earth plug-in for QGIS software, based on MODIS annual 

product (MOD13Q1) at 250 m spatial resolution. SOC has also been computed using 

Trends.Earth based on SoilGrid product (2016) at 250 m spatial resolution. Since the computation 

of the SOC trend is based on the LC changes identified with the LC sub-indicator at 30 m, the 

output product is at 30 m. 

In order to proceed with the integration of the 3 sub-indicators, PP sub-indicator has been 

resampled to 10 m using nearest neighbour algorithm, since it is a categorical map.  

SDG 15.3.1 indicator presents 3 categories: Loss, Gains and No change. The sub-indicators 

integration decision criteria was based on the “one-out, all-out” rule. If any of the three sub-

indicators presented degradation for a given pixel, the final category should be Loss. 

Results 

The land degradation mapping obtained for 2007-2017 for El Bruc is shown in Figure 78.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 78. SDG 15.3.1 indicator for El Bruc region for the period 2007-2017.  
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The results show that the area where the fire occurred in 2015 was still undergoing a strong 

degradation process in 2017, corresponding to a 76.81% of the total area. The areas that 

present improvement (12.92%) or remain stable (10.27%) are mainly dedicated to agriculture. 
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4.2 Tifaracas (Gran Canaria, Spain)  

Tifaracás is a desertified area located in the municipality of Artenara, on the island of Gran 

Canaria (Figure 79). It is located in Nublo II and Tamadaba N2K sites (sites code ES7010039 and 

ES0000111), within the El Nublo Rural Park, which in turn is included in the Gran Canaria 

Biosphere Reserve. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 79. Location map of “Tifaracás” in Gran Canaria Island (red point) and the whole 

study area including Tamadaba and El Nublo II N2K sites (red square). 

 

We find vegetation typical of the arid and semi-arid environments of the island, with a 

predominance of herbaceous species, although with a very low cover, for which it has a high 

risk of desertification. In the framework of the LIFE The Green Link project (LIFE15 CCA/SE/125) 

more than 4,000 seedlings of native forest species, trees and shrubs, were planted using the 

"Cocoon" system. The objective of the plantation is to reverse desertification processes 

protecting the soil against erosion and improve the ecological connectivity of the adjacent 

Canary pine forests. 

The area is severely affected by desertification processes, which are aggravated by reduced 

rainfall, recurrent forest fires and herbivore caused by the abundant presence of wild goats. In 



 

 

 

 

 

 

105 

Deliverable A2.2 “Analysis of the selected regions and pilot sites” 

 

recent years, dry periods, without rainfall, have lasted more than 10 months, which difficult the 

reforestation efforts that try to establish a vegetation cover in order to protect the soil from the 

erosion. Although soils are not particularly vulnerable to erosion due to the high stoniness, the 

low vegetation cover, the steep slopes of the slopes and the torrential rains favour erosive 

processes. These processes cause the loss of fertile soil, which makes it even more difficult to 

establish a vegetation cover. 

The following indices and sub-indicators, reported in Table 35, have been selected in order to 

monitor the pressures and processes described above. 

Table 35. Indices and sub-indicators selected for Tifaracas study site. 

Sub-indicators Sensor 
Spatial 

resolution 
(m) 

Spatial 
frame 

Temporal frame 

LAND COVER MAP 
Landsat 30 

N2K 
+5 km 
buffer 

2005; 2011; 2014   

Sentinel-2 10 2016; 2021   

PRIMARY 
PRODUCTIVITY 

PLANT 
PHENOLOGY 
INDEX (PPI) Sentinel-2 10 

2017-2020  

BURN SEVERITY MAP 2019 

SOC Sentinel-2 10; 30 2005 - 2021 

 

4.2.1 LC temporal trend 

Methodology 

Analysis of LC maps was performed for years 2005, 2011, 2014, 2016 and 2021. They have been 

generated by automatic classification processes of images obtained from the Landsat series 

satellites (mainly Landsat-5/7/8) for year 2005-2014, through their TM, ETM+, OLI and MSI 

sensors and the incorporation of auxiliary information, available from the Information System 

on Soil Occupation of Spain. Maps of 2016 and 2021 have been generated using Sentinel-2A 

and 2B data (mosaic of tiles T28RDR and T28RDS) and a classification method based on kNN 

classifier (González-Guerrero et al., 2019). Bands with native spatial resolution of 20 meters (i.e., 

B5, B6, B7, B8A, B11, B12) were resampled, by a Nearest Neighbour algorithm, at 10 meters as 
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those native (B2, B3, B4, B8). For 2016 map, 15 images distributed along the year were selected 

to obtain a good representation of the phenological dynamics of natural vegetation and crop 

covers (Moré and Pons, 2007). For 2021 map, 27 images were used. Table 36 shows the whole 

of satellite imagery considered for the 2017 and 2021 classifications with their acquisition dates. 

Table 36. List of satellite imagery considered for the LC mappings. 

Year  Acquisition date  Sensor  Spatial resolution (m)  Bands  

2016  

January, 7th  

January, 17th  

March, 17th  

March, 27th  

June, 5th  

June, 25th  

July, 15th  

July, 25th  
August, 4th  
August, 14th  
August, 24th  
September, 3rd  
September, 13th  
October, 23rd  
November, 2nd   

Sentinel-2 A  

10  

B2, B3, B4 (Vis)  

B5, B6, B7 (Red Edge)  

B8, B8A (NIR)  

(8 bands)  

NDVI and NDWI2  

2021  

January, 20th  

January, 25th  

January, 30th  

February, 14th  

February, 19th  

March, 11th  

March, 16th  

March, 26th  

April, 20th  

May, 20th  

May, 30th  

June, 14th  

July, 14th  

July, 19th  

August, 18th  

August, 23rd  

August, 28th  

September, 2nd  

October, 2nd  

October, 12th  

October, 17th  

October, 27th  

November, 1st  

November, 16th  

November, 21st  

December, 26th  

December, 31st  

Sentinel A/B   

 

These images were classified using the kNN algorithm to obtain a map with 8 categories. A set 

of training areas collected through visual interpretation of available orthophotos and 

distributed with a “stratified” sampling to ensure a minimum number of polygons–samples for 

each class (i.e., stratum) (Congalton et al., 2014) were considered for training the classifier and 

subsequent validation of the output map.   
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Results 

The analysis of temporal land cover trends performed in this area shows the following trends 

for the specific land cover categories (Figure 80 and Table 37). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 80. Land cover maps generated. 

Table 37. Land cover categories (ha) for each year respect Tifaracás pilot area (in ha). 

  2005 2011 2014 2016 2021 

Bare soil /rock  29127.46 25658.18 23590.65 26498.26 29764.93 

Crop  3774.93 3337.1 4912.43 4917.88 6202.2 

Forest  6253.64 6911.13 9336.88 8246.99 8661.01 

Grasslands  1651.84 1559.27 1954.27 521.96 823.81 

Greenhouse    306.28 245.7 198.29 

Shrublands  9788.92 13091.56 10345.31 10474.88 5353.29 

Urban Areas  323.61 357.31 390.43 95.2 63.84 

Water bodies  7481.34 7487.19 7562.7419 7400.87 7334.37 
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Figure 81. Temporal trend of LC classes presence. 

 

From the analysis of the temporal trend for the LC of the area where restoration practices were 

performed (Figure 81), the following considerations can be evaluated:  

• This study area has been undergoing a strong desertification process since 2014. Bare 

soil areas have increased while shrubland areas have decreased; 

• Other types of categories remain similar during the period analysed (16 years), indicating 

the slow changing processes occurring in the area.  

In terms of LC degradation and following the transitions defined by the UNCCD protocol 

(degradation, stable or Improvement), the evolution of LC of the study area (Figure 82) between 

2005 and 2021 shows some areas that have been strongly degraded during these years due to 

fire events (2019). 
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Figure 82. Temporal trend of LC classes presence. 

 

4.2.2 BS temporal trend 

Methodology 

The Tamadaba area suffered a big fire event starting in August, 17th 2019. Such event did not 

affect the study area. However, since the area affected by the fire is close and similar regarding 

the LC types to the one included in the project, an analysis to identify the fire-affected area has 

been performed in order to monitor the recovery trends of these type of land covers. BS has 

been calculated according to Nasery & Kalkan (2020) for a satellite image just before the event 

and just after the event. Following, the difference between the former and the latter NBRs 

(dNBR) has been also computed as indicator of burn severity. The analysis has been carried out 

using Sentinel-2 images. The list of images used is included in Table 38.   

  



 

 

 

 

 

 

110 

Deliverable A2.2 “Analysis of the selected regions and pilot sites” 

 

Table 38. List of satellite imagery considered for the BS mappings. 

Year  Acquisition date  Sensor  Spatial resolution (m)  Bands  

2019  
June, 20th  

August, 24th  
Sentinel-2 A /B  10  

B8A (NIR narrow)  

B12 (SWIR)  

 

Results 

Resulting mappings are shown in Figures 83 and 84. 

 

 

 

 

 

 

 

 

 

 

Figure 83. BS mapping for Sentinel-2 June, 20th (pre-fire) (left) and August, 24th (post-fire) (right). 

 

 

 

 

 

 

 

 

 

Figure 84. dNBR indicating the severity of the fire event. 
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From the analysis of the BS mapping, it can be concluded that:  

• Part of the area affected by the fire event was forest composed by Pinus canariensis, a 

fire adapted species, very resistant to fight high temperatures and flames (due to the 

tick, insulating bark), with capacity to regrowth after fire events;  

• Most of the area presenting high intensity fire corresponded to bare soil and rocks;  

• In areas with very low or null vegetation, the NBR accuracy is reduced and the limits of 

the burned area are quite inaccurate. This fact should be considered when monitoring 

areas affected by advanced desertification processes.  

 

4.2.3 PP temporal trend 

Methodology 

Primary productivity has been analysed based on the Copernicus HR-VPP product. TPROD for 

the 4 available years (2017-2020) has been downloaded from WeKEO platform and combined 

with the area of the study to monitor its productivity trends. First year of analysis correspond 

to 2017, two years before the fire events of 2019. 

Results 

Figure 85 illustrates the TPROD product and Table 39 and Figure 87 quantitatively analyse the 

results. Figure 86 shows the difference of productivity for the period 2022 and 2017. In 2019, 

the perimeter of the fire is easily identified and the distribution of the main productivity 

degradation is sparse along the whole area. 

 Table 39. Statistics of all pixels included in the study area. 

 

   2017  2018  2019  2020  2021  2022  

Mean  796.6663 847.5101 721.2555 465.0731 1255.427 1154.47 

St. Dev  716.1951 702.8564 725.1095 597.9858 971.9349 848.5118 

Minimum  0 0 0 0 0 0 

Maximum 8898 9598 9269 8063 17072 13985 

1st quartile  534 579 350 132 579 534 

Media  1154.47 1255.42 1115.8 1.94 1054 1002 

3rd quartile  1584 1690 1599 1132 1690 1584 
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2017 2018 

   

2019 2020 

  

2021 2022 

  

Figure 85. TPROD. The growing season integral computed as sum of all daily values minus   

their base level value (units: PPI * day). 

  



 

 

 

 

 

 

113 

Deliverable A2.2 “Analysis of the selected regions and pilot sites” 

 

 

 

 

 

 

 

 

 

 

Figure 86. Difference of productivity between 2022 and 2017. 

The trend of productivity clearly decreases until 2020 (R2=0.71) and after this period it slightly 

increases. This might be due to climatic conditions. An important aspect to highlight is that 

although the minimum and the maximum productivity values remain almost constant, the 1st 

and 3rd quartiles decrease significantly with time, except for the last two years.  

 

 

 

 

 

 

 

 

Figure 87. Trends of mean, min, max, 1st quartile and 3rd quartile of TPROD of the area.    
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4.2.4 SOC temporal trend 

Methodology 

The extraction of SOC temporal trend was performed following the same methodology as for 

El Bruc case study. The initial and final years considered for the land cover changes were 2005 

and 2021. 

Results  

Results (Figure 88) show that most of the areas presenting SOC degradation are also presenting 

LC degradation. Similar to El Bruc case study, differences between LC degradation and SOC 

degradation are found at croplands, where SOC is mainly considered stable or even improve in 

2021. 

 

 

 

 

 

 

 

 

 

 

Figure 88. SOC degradation mapping produced for Tifaracás for period 2005-2021. 
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4.2.5 SDG 15.3.1 computation and land degradation mapping 

Methodology 

The calculation of SDG 15.3.1 for Tifaracás has been done following the UNCCD guidelines. The 

3 sub-indicators have been computed for the period 2005-2021 (PP from 2005 to 2020) 

obtaining 3 categorical maps with categories: stable, improved, degradation. LC sub-indicator has 

been computed using the baseline maps presented in section 4.2.1 at spatial resolution of 10 

m. PP has been computed using Trends.Earth plug-in for QGIS software, based on MODIS annual 

product (MOD13Q1) at 250 m spatial resolution. SOC has also been computed using 

Trends.Earth based on SoilGrids product (2016) at 250 m spatial resolution. Since the 

computation of the SOC trend is based on the LC changes identified with the LC sub-indicator 

at 10 m, the output product is at 10 m.  

In order to proceed with the integration of the 3 sub-indicators, PP sub-indicator has been 

resampled to 10 m using nearest neighbour algorithm, since it is a categorical map.  

The SDG 15.3.1 indicator presents 3 categories: Loss, Gains and No change. The sub-indicators 

integration decision criteria was based on the “one-out, all-out” rule. If any of the three sub-

indicators presented degradation for a given pixel, the final category should be Loss. 

Results  

The land degradation mapping obtained for 2005-2021 for Tifaracás is shown in Figure 89: 

 

 

 

 

 

 

 

Figure 89. SDG 15.3.1 indicator for Tifaracás region for period 2005-2021.  
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One of the main issues identified in the final map is the artifacts derived of using sub-indicators 

that have different resolutions. If the end user prefers to avoid these artifacts, it is 

recommended to work with the smallest resolution of the 3 sub-indicators (in this case would 

have been 250 m), although spatial detail will be lost. 

It is also noteworthy, that the LC transition of Trends.Earth is based on 7 land cover categories 

(wetlands, water, artificial, grasslands, croplands, tree cover and other covers), but none of 

them is related to shrublands, a typical cover at Mediterranean landscapes. This forced 

classification might introduce some accuracy errors. 

Once the indicator obtained, the proportions of land that is degraded over the total land area 

has been also computed. A 21.59% of the area present degradation for the period 2005-2021, 

a 28.94% present improvement and the rest 49.46% do not present changes in terms of 

degradation. 
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Conclusions 

RS data and techniques represent an essential support for the monitoring of the LD status.  

In the framework of NewLife4Drylands project, Action A2 has focused on the extraction from 

RS data of EVs (indices, indicators or their proxies) at local scale useful to characterize and 

monitor the LD status of each study site according to the local pressures and threats affecting 

each site. Freely available open data have been considered as much as possible. 

For each EV, the temporal trend has been analysed and time-series maps have been produced. 

These EVs have been considered as sub-indicators to be integrated to compute the SDG 15.3.1 

indicator as recommended by United Nations Convention to Combat Desertification (UNCCD) 

to characterize the LD status of the site producing degradation mappings.  

Interesting information about LD status have emerged and both quantitative and qualitative 

evaluations have been possible for long-term and medium/short term analysis for each study 

site as reported in the specific sections. 

The following overall considerations can be addressed: 

• Working at a local scale, it is essential to produce information that is truly useful to local 

decision makers, and freely available services such as Copernicus at a pan-European 

scale are unreliable. 

• Starting from the analysis of local pressures and threats affecting each site is essential 

to address all the investigations by choosing the most suitable sub-indicators to be 

integrated in the calculation of SDG 15.3.1: as an example even if in the UNCCD 

Guidelines (Sims et al., 2021) changes in cultivated land use are not degradation this is 

not true for the Alta Murgia , because can be considered the main cause of biodiversity 

loss from the natural grassland ecosystem; 

• Focusing on a specific class of LC subject to degradation can allow for reduced 

calculation complexity; 

• The QGIS Trends.Earth plugin is the current tool for calculating SDG 15.3.1 and its main 

sub-indicators, but it often has problems of instability and the customised use of its own 

data is not so straightforward: for example, the calculation of SOC is based on the use 
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of 2 mappings of LCs that are reclassified by the tool into 7 macro-classes of LCs that in 

many cases do not allow the local landscape to be represented with efficacy; 

• The use of additional sub-indicators in the calculation of SDG 15.3.1 needs to be better 

investigated in order to assess not only the empirical and crisp thresholds, but also a 

fuzzy approach could represent higher reliability; 

• Some known sub-indicators would require more suitable formulations: HP, for example, 

would require taking into account the season (month) in which the presence of water 

(rain/snow) during the year and its quantity; 

• The availability of ground truth data is essential for the validation of mappings obtained 

with RS techniques and many more field inspections would be necessary: in countries 

where other projects have been previously funded, more accurate validations have been 

possible. 
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